课时跟踪检测(十五)导数与函数的极值、最值一抓基础,多练小题做到眼疾手快1.(2016·岳阳一模)下列函数中,既是奇函数又存在极值的是()A.y=x3B.y=ln(-x)C.y=xe-xD.y=x+解析:选D由题可知,B,C选项中的函数不是奇函数,A选项中,函数y=x3单调递增(无极值),而D选项中的函数既为奇函数又存在极值.2.函数f(x)=lnx-x在区间(0,e]上的最大值为()A.1-eB.-1C.-eD.0解析:选B因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时,f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln1-1=-1.3.当函数y=x·2x取极小值时,x=()A.B.-C.-ln2D.ln2解析:选B令y′=2x+x·2xln2=0,∴x=-.4.若函数f(x)=x3-2cx2+x有极值点,则实数c的取值范围为()A.B.C.∪D.∪解析:选D若函数f(x)=x3-2cx2+x有极值点,则f′(x)=3x2-4cx+1=0有根,故Δ=(-4c)2-12>0,从而c>或c<-.故实数c的取值范围为∪.5.已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为()A.1B.2C.3D.4解析:选B由函数极值的定义和导函数的图象可知,f′(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x=0不是函数f(x)的极值点,其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个.二保高考,全练题型做到高考达标1.函数f(x)=x2-lnx的最小值为()A.B.1C.0D.不存在解析:选Af′(x)=x-=,且x>0.令f′(x)>0,得x>1;令f′(x)<0,得0<x<1.∴f(x)在x=1处取得极小值也是最小值,且f(1)=-ln1=.2.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则的值为()A.-B.-2C.-2或-D.2或-解析:选A由题意知,f′(x)=3x2+2ax+b,f′(1)=0,f(1)=10,即解得或经检验满足题意,故=-.3.(2016·浙江瑞安中学月考)已知函数f(x)=x3+bx2+cx的图象如图所示,则x+x等于()A.B.C.D.解析:选C由图象可知f(x)的图象过点(1,0)与(2,0),x1,x2是函数f(x)的极值点,因此1+b+c=0,8+4b+2c=0,解得b=-3,c=2,所以f(x)=x3-3x2+2x,所以f′(x)=3x2-6x+2.x1,x2是方程f′(x)=3x2-6x+2=0的两根,因此x1+x2=2,x1x2=,所以x+x=(x1+x2)2-2x1x2=4-=.4.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为y=f(x)图象的是()解析:选D因为[f(x)ex]′=f′(x)ex+f(x)(ex)′=[f(x)+f′(x)]ex,且x=-1为函数f(x)ex的一个极值点,所以f(-1)+f′(-1)=0;选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0.5.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是()A.[-5,0)B.(-5,0)C.[-3,0)D.(-3,0)解析:选C由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示,令x3+x2-=-得,x=0或x=-3,则结合图象可知,解得a∈[-3,0),故选C.6.函数f(x)=x3+x2-3x-4在[0,2]上的最小值是________.解析:f′(x)=x2+2x-3,令f′(x)=0得x=1(x=-3舍去),又f(0)=-4,f(1)=-,f(2)=-,故f(x)在[0,2]上的最小值是f(1)=-.答案:-7.(2016·广州模拟)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b=________.解析:由题意得f′(x)=3x2+6ax+b,则解得或经检验当a=1,b=3时,函数f(x)在x=-1处无法取得极值,而a=2,b=9满足题意,故a-b=-7.答案:-78.函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间是________.解析:令f′(x)=3x2-3a=0,得x=±,则f(x),f′(x)随x的变化情况如下表:x(-∞,-)-(-,)(,+∞)f′(x)+0-0+f(x)极大值极小值从而解得所以f(x)的单调递减区间是(-1,1).答案:(-1,1)9.已知函数f(x)=x-1+(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值...