1/151.2.5空间中的距离学习目标核心素养掌握向量长度计算公式.(重点)会用向量方法求两点间的距离、点到平面的距离、直线到平面的距离面到面的距离.(重点、难点)通过学习空间距离的求解,提升逻辑推理、学运算素养.“距离”在生活中随处可见,其概念是从生活中的具体问题中抽象出来的.义务教育阶段已经学过点与点之间的距离,那么在空间中两个图形之间的距离又是怎样呢?1.空间中两点之间的距离空间中两点之间的距离指的是这两个点连线的线段长.思考1:在空间中怎样求两点之间的距离?[提示]利用向量法转化为求向量的模.2.点到直线的距离给定空间中一条直线l及l外一点A,因为l与A能确定一个平面,所以过A可以作直线l的一条垂线段,垂线段的长称为点A到直线l的距离.3.点到平面的距离(1)给定空间中一个平面α及α外一点A,过A可以作平面α的一条垂线段,垂线段的长称为点A到平面α的距离.提醒:点到平面的距离是这个点与平面内点的最短连线的长度.(2)一般地,若A是平面α外一点,B是平面α内一点,n是平面α的一个法向量,则点A到平面α的距离为d=|BA→·n||n|.提醒:若点A是平面α内一点,则约定A到平面α的距离为0.4.相互平行的直线与平面之间、相互平行的平面与平面之间的距离(1)当直线与平面平行时,直线上任意一点到平面的距离称为这条直线与这个平面2/15之间的距离,如果直线l与平面α平行,n是平面α的一个法向量,A、B分别是l上和α内的点,则直线l与平面α之间的距离为d=|BA→·n||n|.(2)当平面与平面平行时,一个平面内任意一点到另一个平面的距离称为这两个平行平面之间的距离.如果平面α与平面β平行,n是平面β的一个法向量,A和B分别是平面α和平面β内的点,则平面α和平面β之间的距离为d=|BA→·n||n|.思考2:线面距、面面距与点面距有什么关系?提示:1.思考辨析(正确的打“√”,错误的打“×”)(1)可以用|AB→|=|AB→|2=AB→·AB→,求空间两点A、B的距离.()(2)设n是平面α的法向量,A是平面α内一点,AB是平面α的一条斜线,则点B到α的距离为d=|AB→·n||n|.()(3)若直线l与平面α平行,直线l上任意一点与平面α内任意一点的距离就是直线l与平面α的距离.()[答案](1)√(2)√(3)×[提示](1)√(2)√(3)×直线上任意一点到平面α的垂线段的长度.2.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|等于()A.534B.5323/15C.532D.132C[ M点坐标为2,32,3,∴|MC|=错误!=错误!.]3.在四面体P-ABC中,PA,PB,PC两两垂直,M是平面ABC内一点,且点M到其他三个平面的距离分别是2,3,6,则点M到顶点P的距离是()A.7B.8C.9D.10A[以P为坐标原点,PA→,PB→,PC→的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(图略),由题意,得|MP|=22+32+62=7.]4.已知平面α的一个法向量n=(1,0,1),点A(-1,1,0)在α内,则平面外点P(-1,1,1)到平面α的距离为________.22[AP→=(0,0,1),n=(1,0,1),d=|AP→·n||n|=12=22.]空间两点间的距离【例1】如图所示,正方形ABCD,ABEF的边长都是1,而且平面ABCD,ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0