电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

基本不等式-副本VIP免费

基本不等式-副本_第1页
1/17
基本不等式-副本_第2页
2/17
基本不等式-副本_第3页
3/17
这是2002年在北京召开的第24届国际数学家大会的会标.会标是根据中国古代数学家赵爽的弦图设计而成的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。1、设直角三角形的两条直角边长为a,b,你能用a,b表示哪些图形的面积?这些面积有什么关系?2、你能说明什么时候等号成立么?等号成立时,图形有什么特点?ADCBHFGEab22ba22ba1、正方形ABCD的面积S=_____2、四个直角三角形的面积和S’=__ab23、S与S’有什么样的不等关系?探究1:S>S′问:那么它们有相等的情况吗?ADBCEFGHba22ab重要不等式:一般地,对于任意实数a、b,我们有当且仅当a=b时,等号成立。222ababABCDE(FGH)ab思考:你能给出不等式的证明吗?abba2220)(2ba0)(2ba2()0ab所以≥222.abab所以≥时当ba时当ba222abab≥证明:(作差法)2)(ba结论:一般地,对于任意实数a、b,总有当且仅当a=b时,等号成立222abab≥文字叙述为:两数的平方和不小于它们积的2倍.适用范围:a,bR∈0,0,,,,ababab如果我们用分别代替可得到什么结论?0,0,,,,ababab如果我们用分别代替可得到什么结论?22()()2abab≥2abab≥替换后得到:即:)0,0(ba2abab≥即:特别地,若a>0,b>0,则_____2abab≥通常我们把上式写作:(0,0)2ababab≤当且仅当a=b时取等号,这个不等式就叫做基本不等式.基本不等式正数a,b的算术平均数,正数a,b的几何平均数;文字叙述为:两个正数的算术平均数不小于它们的几何平均数.适用范围:a>0,b>0适用范围文字叙述“=”成立条件222abab≥2abab≥a=ba=b两个正数的算术平均数不小于它们的几何平均数两数的平方和不小于它们积的2倍a,b∈Ra>0,b>0填表比较:例1.利用基本不等式填空时等号成立。当且仅当、___________,0,01yxyx时等号成立。当且仅当、______,2______0,02nmnm时等号成立。当且仅当、___________,20,03yxyx时等号成立。当且仅当、______,__________105xxx等号成立。时当且仅当、________,__________0,042yxyxxy2yxnmnmxy22yx2yxyx222212xx2xy1x例1:(1)如图,用篱笆围成一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?解:如图设BC=x,CD=y,则xy=100,篱笆的长为2(x+y)m.2xyxy≥210020,xy≥2()40xy≥当且仅当时,等号成立因此,这个矩形的长、宽都为10m时,所用的篱笆最短,最短的篱笆是40m.xy此时x=y=10.x=yABDC1001010xyxxyy解,可得若x、y皆为正数,则当xy的值是常数P时,当且仅当x=y时,x+y有最小值_______.2P22≥xyxyP例1:(2)如图,用一段长为36m的篱笆围成一个矩形菜园,问这个矩形菜园的长和宽各为多少时,菜园的面积最大,最大面积是多少?解:如图,设BC=x,CD=y,则2(x+y)=36,x+y=18矩形菜园的面积为xym22xyxy≤得xy≤81当且仅当x=y时,等号成立因此,这个矩形的长、宽都为9m时,菜园面积最大,最大面积是81m21892即x=y=9xyABDC若x、y皆为正数,则当x+y的值是常数S时,当且仅当x=y时,xy有最大值_______;214S21422≤≤xySxyxyS①各项皆为正数;②和或积为定值;③注意等号成立的条件.一“正”二“定”三“相等”利用基本不等式求最值时,要注意已知x,y都是正数,P,S是常数.(1)xy=Px+y≥2P(当且仅当x=y时,取“=”号).(2)x+y=Sxy≤S2(当且仅当x=y时,取“=”号).14变式:如图,用一段长为24m的篱笆围一个一边靠墙的矩形花园,问这个矩形的长、宽各为多少时,花园的面积最大,最大面积是多少?解:如图,设BC=x,CD=y,则篱笆的长为矩形花园的面积为xym2xyABDC22xy≥得144≥2xy当且仅当时,等号成立因此,这个矩形的长为12m、宽为6m时,花园面积最大,最大面积是72m2即xy≤72即x=12,y=6x+2y=24x=2y2422xy≥2xy2241226xyxxyy解,可得221R,2(),,abababab那么≥当且仅当时,等号成立(2)(>0,>0)2abababab≤,当且仅当时,等号成立。小结:求最值时注意把握“一正,二定,三相等”已知x,y都是正数,P,S是常数.(1)xy=Px+y≥2P(当且仅当x=y时,取“=”号).(2)x+y=Sxy≤S2(当且仅当x=y时,取“=”号).142.利用基本不等式求最值1.两个重要的不等式作业课本P100习题3.4A组第2、3题

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

基本不等式-副本

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部