浅谈中小学数学教学衔接问题及对策我们时常听到有的学生家长说:“我的孩子在小学数学考试成绩大多都在八十分以上,很少有不及格的情况。怎么升初中后数学成绩下滑这么快?”,我们调查了几届六年级学生升入初一后的数学成绩发现的确存在这一现象。走访其他学校,发现也存在同样的问题。目前随着新课标的深入落实,中小学数学教学所存在的脱节现象日益严重,一部分学生进入初中后,由于新知识的增加引发了许多的变化,视野的扩展、思维方式的改变致使一部分刚步入初中门槛的学生一时难以适应,导致成绩一时明显下降。按照思维发展规律,思维方式的转变需要一个过程,如何缩短这个过程?如何搞好中小学数学教学衔接,使中小学的数学教学具有连续性和统一性,使学生的数学知识和能力都衔接自如,是摆在我们教师面前的一个重要任务。本文就衔接问题及对策提出粗浅的的看法,供同行们商榷。一、当前中小学数学教学衔接存在的问题1.从小学到中学数学知识从横向、纵向两方面扩展(1)数的范围发生了变化从小学进入中学,学生遇到一些新的问题。比如,测量温度,当气温在零度以上时,学生能用小学所学的数表示其温度的高低,但当气温在零度以下时,就难以用小学所学的数表示了。再比如,测量一座山的海拔高度(以海平面为零界面),用小学所学的数也就可以表示了,但测量海平面以下海水的深度时,又如何表示呢?为解决这类实际问题,引入了“负数”的概念。这样初中所学的数,就由小学所学的正整数、正分数和零扩大到包含正数、负数和零的有理数范围。随即又出现了一类新的数,如:已知正方形的面积为2,它的边长是多少?于是又引入了无理数的概念。数的范围又扩大到包括有理数和无理数在内的实数的范围。(2)数的形式发生了变化在小学范围内,解决实际问题,是可视为实物个数的数通过运算得出结论。升入中学,数的范围扩大到有理数和实数之后,与小学相比难度大大增加,其形式上也发生了变化。一个点、一条线段的长度、一个数值都可用一个有理数或无理数表示出来了。但是另一类数又如何简单地表示呢?比如:用n表示整数,2n就表示偶数,2n+l就表示奇数,这样就解决了所有奇偶数的表达问题。一个简单的代数式就表示了无数个现实的数,变量之间的函数关系等,使学生由常量数学走入变量数学学习,这样的变化给学生提供了更广阔的思维空间。(3)解决问题的方法发生了变化在未引入代数知识之前,解决实际问题大多用的是算术方法,即由若干已知数值,采用的直接推出的办法得出结果。而引入代数概念后,给解决实际问题提供了更加简捷的途径。把问题中给出的己知量和问题所求的结果——未知量,均视作已知,按照数学逻辑,建立等量关系,然后通过运算求出未知数。这种方法就是方程的思想方法。所以小学解决数学问题使用的是直推法,由己知数间的关系直接推出结论。中学解决数学问题,使用的是假设法,即先假设所求的未知数为己知数,把它和其它已知数按照题中所给出的关系组成等式,然后再通过求解得出结论。(4)几何拓展,不断提升新课标对几何内容的安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质展现出来。在几何内容上从小学到中学的变化,实际上是从“实验几何”过渡到“推理论证几何”。推理几何仍是传统难关。2、教学方法法衔接问题目前,“衔接”上最大的问题是教学方法的严重脱节。小学教学进度慢、坡度缓;而中学教学进度快、坡度大。小学直观教学多,练习形式多;而中学直观教学少,练习形式少,教师辅导也少。小学重感性知识,口头回答问题多;而中学重理性知识,书面回答多。小学强调直观演示、偏重形象思维;而中学强调推理论证,偏重抽象思维。所以学生刚进中学感到不适应。3、学习方法衔接问题小学阶段科目少,内容浅,而中学课程增多,内容拓宽,知识深化,尤其是数学由具体发展到抽象,由静态发展到动态,学生认识结构发生了根本变化,加之一部分学生还未脱离教师的“哺乳期”,没有自觉学习的能力,致使有些学生因不会学习或学不得法...