巧构图妙解题对于有些代数题采用常规方法处理往往颇费周折,而利用“图形”则会取得事半功倍的效果。请看:例1.已知a,b,c,d都是正数,并且。求证:证明:作和,使斜边,,(如图1)。图1由得:又所以又所以即例2.A、B两地相距64千米,甲骑车比乙骑车每小时少行4千米。如果甲、乙两人分别从A、B两地相向而行,甲比乙先行40分钟,两人相遇时所行的路程正好相等。求甲、乙两人骑车的速度各是多少?解:如图2所示,AB表示A、B两地相距64千米,AC⊥AB图2设AC=x,表示甲的行驶速度,作BD⊥AB设BD=x+4,表示乙的行驶速度,在AB上,取,表示甲在40分钟所行的路程,⊥AB,且=x,连结与AB交于E,表示甲、乙各在A、B处同时相向而行并相遇于E点,于是由,得解得:(舍去)于是即甲、乙两人骑车的速度分别为12千米/小时和16千米/小时。例3.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁。”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁。”请你算一算甲、乙现在的各自岁数。图3解:如图3,画两条直线分别表示甲、乙的年龄,设乙现在的年龄为x岁,从图形中可以很直观地看到。当甲为x岁时,乙为4岁;当乙为x岁时,甲为岁;当乙为岁时,甲为61岁。根据甲、乙的年龄差不变,可得解得:所以答:甲现在42岁,乙现在23岁。例4.设a,b,c都是正实数,求证:证明:时,显然成立。由于a,b的地位相同,不妨假设,这时要证的不等式转化为。图4作△ABC(如图4),CA=CB,CD为底边AB上的高,E为CD上的一点,使得,由勾股定理得:又在△CBE中,即综上,命题得证。例5.设a,b,c,d均为正数,满足,且a为最大。求证:。证明:不妨取线段,在AC上取一点B,使,则,以BC为直径作⊙O,如图5。图5设,作割线(或切线)交⊙O于E,作OF⊥AD,F为垂足。因为即因为,所以又在中,AO>AF所以即有