壹、三角學的起源與發展三角學之英文名稱Trigonometry,約定名於西元1600年,實際導源於希臘文trigono(三角)和metrein(測量),其原義為三角形測量(解法),以研究平面三角形和球面三角形的邊和角的關係為基礎,達到測量上的應用為目的的一門學科。早期的三角學是天文學的一部份,後來研究範圍逐漸擴大,變成以三角函數為主要對象的學科。現在,三角學的研究範圍已不僅限於三角形,且為數理分析之基礎,研究實用科學所必需之工具。(一)西方的發展三角學﹝Trigonometry﹞創始於西元前約150年,早在公元前300年,古代埃及人已有了一定的三角學知識,主要用於測量。例如建築金字塔、整理尼羅河泛濫後的耕地、通商航海和觀測天象等。公元前600年左右古希臘學者泰勒斯(p13)利用相似三角形的原理測出金字塔的高,成為西方三角測量的肇始。公元前2世紀後希臘天文學家希帕霍斯(HipparchusofNicaea)為了天文觀測的需要,作了一個和現在三角函數表相仿的「弦表」,即在固定的圓內,不同圓心角所對弦長的表,他成為西方三角學的最早奠基者,這個成就使他贏得了「三角學之父」的稱謂。公元2世紀,希臘天文學家數學家托勒密(Ptolemy)(85-165)繼承希帕霍斯的成就,加以整理發揮,著成《天文學大成》13卷,包括從0°到90°每隔半度的弦表及若干等價於三角函數性質的關係式,被認為是西方第一本系統論述三角學理論的著作。約同時代的梅內勞斯(Menelaus)寫了一本專門論述球三角學的著作《球面學》,內容包球面三角形的基本概念和許多平面三角形定理在球面上的推廣,以及球面三角形許多獨特性質。他的工作使希臘三角學達到全盛時期。(二)中國的發展我國古代沒有出現角的函數概念,只用勾股定理解決了一些三角學範圍內的實際問題。據《周髀算經》記載,約與泰勒斯同時代的陳子已利用勾股定理測量太陽的高度,其方法後來稱為「重差術」。1631西方三角學首次輸入,以德國傳教士鄧玉函、湯若望和我國學者徐光啟(p20)合編的《大測》為代表。同年徐光啟等人還編寫了《測量全義》,其中有平面三角和球面三角的論述。1653年薛風祚與波蘭傳教士穆尼閣合編《三角算法》,以「三角」取代「大測」,確立了「三角」名稱。1877年華蘅煦等人對三角級數展開式等問題有過獨立的探討。現代的三角學主要研究角的特殊函數及其在科學技術中的應用,如幾何計算等,多發展於20世紀中。貳、三角函數的演進正弦函數、餘弦函數、正切函數、餘切函數、正割函數、餘割函數統稱為三角函數(Trigonometricfunction)。儘管三角知識起源於遠古,但是用線段的比來定義三角函數,是歐拉(p16)(1707-1783)在《無窮小分析引論》一書中首次給出的。在歐拉之前,研究三角函數大都在一個確定半徑的圓內進行的。如古希臘的托勒密定半徑為60;印度人阿耶波多(約476-550)定半徑為3438;德國數學家里基奧蒙特納斯(1436-1476)為了精密地計算三角函數值曾定半徑600,000;後來為製訂更精密的正弦表又定半徑為107。因此,當時的三角函數實際上是定圓內的一些線段的長。意大利數學家利提克斯(1514-1574)改變了前人的做法,即過去一般稱AB為的正弦,把正弦與圓牢牢地連結在一起(如下頁圖),而利提克斯卻把它稱為∠AOB的正弦,從而使正弦值直接與角掛勾,而使圓O成為從屬地位了。到歐拉(Euler)時,才令圓的半徑為1,即置角於單位圓之中,從而使三角函數定義為相應的線段與圓半徑之比。1.正弦、餘弦在△ABC中,a、b、c為角A、B、C的對邊,R為△ABC的外接圓半徑,則有稱此定理為正弦定理。正弦定理是由伊朗著名的天文學家阿布爾.威發(940-998)首先發現與証明的。中亞細亞人阿爾比魯尼﹝973-1048﹞(p15)給三角形的正弦定理作出了一個証明。也有說正弦定理的証明是13世紀的那希爾丁在《論完全四邊形》中第一次把三角學作為獨立的學科進行論述,首次清楚地論証了正弦定理。他還指出,由球面三角形的三個角,可以求得它的三個邊,或由三邊去求三個角。這是區別球面三角與平面三角的重要標誌。至此三角學開始脫離天文學,走上獨立發展的道路。托勒密(ClaudiusPtolemy)的《天文學大成》第一卷除了一些初級的天文學資料之外,還包括了上面講的弦表...