电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

三角形全等证明题中常用的辅助线的几种方法。。VIP免费

三角形全等证明题中常用的辅助线的几种方法。。_第1页
1/4
三角形全等证明题中常用的辅助线的几种方法。。_第2页
2/4
三角形全等证明题中常用的辅助线的几种方法。。_第3页
3/4
EDFCBA一、截长补短1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC∴△DOC≌△FOC,CF=CD∴AC=AF+CF=AE+CD.二、倍长中线(线段)造全等2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.解:延长FD于K,使得DK=DF∵DE⊥DF∴∠EDK=∠EDF=90o又∵DK=DFED为公共边∴⊿EDK≌⊿EFD∴EK=EF三、作平行线3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC于F.求证:DF=EF.证明:作DH∥AE交BC于H.∴∠DHB=∠ACB,∵AB=AC,∴∠B=∠ACB∴∠DHB=∠B,DH=BD∵CE=BD∴DH=CE又DH∥AE,∠HDF=∠E∠DFH=∠EFC(对顶角)∴△DFH≌△EFC(AAS)∴DF=EF四、补全图形4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离AD为a,求BE的长.证明:延长AD、BC相交于F.由BD为∠ABC的平分线,BD⊥AF.易证△ADB≌△FDB∴FD=AD=aAF=2a∠F=∠BAD又∠BAD+∠ABD=90°,∠F+∠FAC=90°∴∠ABD=∠FAC∵BD为∠ABC的平分线∴∠ABD=∠CBE∴∠FAC=∠CBE,而∠ECB=∠ACF=90°,AC=BC∴△ACF≌△BCE(ASA)∴BE=AF=2a五、利用角的平分线对称构造全等5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°.证明:AD=CD.证明:在BC上截取BE=BA,连接DE.由BD平分∠ABC,易证△ABD≌△EBD∴AD=DE∠A=∠BED又∠A+∠C=180°,∠BED+∠DEC=180°∴∠DEC=∠C,∴DE=CD∴AD=CD七、图形变换轴对称1.AD为△ABC的角平分线,直线MN⊥AD于A.E为MN上一点,△ABC周长记为AP,△EBC周长记为BP.求证BP>AP.平移2:如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE.FEDCBAEDCBA旋转1:正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

三角形全等证明题中常用的辅助线的几种方法。。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部