电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第八节解三角形应用举例VIP免费

第八节解三角形应用举例_第1页
1/35
第八节解三角形应用举例_第2页
2/35
第八节解三角形应用举例_第3页
3/35
首页上一页下一页末页结束数学第八节解三角形应用举例在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线时叫仰角,目标视线在水平视线时叫俯角.(如图(a)).1.仰角和俯角上方下方第八节解三角形应用举例首页上一页下一页末页结束数学第八节解三角形应用举例2.方位角从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图(b)).3.方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度.首页上一页下一页末页结束数学第八节解三角形应用举例易混淆方位角与方向角概念:方位角是指北方向与目标方向线按顺时针之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.首页上一页下一页末页结束数学第八节解三角形应用举例[试一试]若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.答案:B首页上一页下一页末页结束数学第八节解三角形应用举例把握解三角形应用题的四步(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型;(3)根据题意选择正弦定理或余弦定理求解;(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.首页上一页下一页末页结束数学第八节解三角形应用举例如图,设A,B两点在河的两岸,一测量者在A的同侧,选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为()A.502mB.503mC.252mD.2522m解析:由正弦定理得AB=AC·sin∠ACBsinB=50×2212=502(m).[练一练]答案:A首页上一页下一页末页结束数学第八节解三角形应用举例研究测量距离问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.归纳起来常见的命题角度有:(1)两点都不可到达;(2)两点不相通的距离;(3)两点间可视但有一点不可到达.首页上一页下一页末页结束数学第八节解三角形应用举例1.如图,A,B两点在河的同侧,且A,B两点均不可到达,测出AB的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.角度一两点都不可到达首页上一页下一页末页结束数学第八节解三角形应用举例解: ∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32.在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin45°·sin30°=64.首页上一页下一页末页结束数学第八节解三角形应用举例在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos45°=34+38-2×32×64×22=38.∴AB=64(km).∴A,B两点间的距离为64km.首页上一页下一页末页结束数学第八节解三角形应用举例角度二两点不相通的距离2.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2abcosα.若测得CA=400m,CB=600m,∠ACB=60°,试计算AB的长.首页上一页下一页末页结束数学第八节解三角形应用举例解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB,∴AB2=4002+6002-2×400×600cos60°=280000.∴AB=2007m.即A,B两点间的距离为2007m.首页上一页下一页末页结束数学第八节解三角形应用举例3.如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出AB的距离,其方法在A所在的岸边选定一点C,可以测出AC的距离m,再借助仪器,测出∠ACB=α,∠CAB=β,在△ABC中,运用正弦定理就可以求出AB.若测...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第八节解三角形应用举例

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部