题组层级快练(四十二)1.(2016·成都二诊)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β答案D解析对于选项A,两平面β,γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α,β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,由m∥n,m⊥α,∴n⊥α.又n⊥β,∴α∥β,故选D.2.已知不同直线m,n及不重合平面α,β,给出下列结论:①m⊂α,n⊂β,m⊥n⇒α⊥β②m⊂α,n⊂β,m∥n⇒α∥β③m⊂α,n⊂α,m∥n⇒α∥β④m⊥α,n⊥β,m⊥n⇒α⊥β其中的假命题有()A.1个B.2个C.3个D.4个答案C解析①为假命题,m不一定与平面β垂直,所以平面α与β不一定垂直.命题②与③为假命题,②中两平面可以相交,③没有任何实质意义.只有④是真命题,因为两平面的垂线所成的角与两平面所成的角相等或互补.3.(2016·沧州七校联考)如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论不正确的是()A.CD∥平面PAFB.DF⊥平面PAFC.CF∥平面PABD.CF⊥平面PAD答案D解析A中, CD∥AF,AF⊂面PAF,CD⊄面PAF,∴CD∥平面PAF成立;B中, ABCDEF为正六边形,∴DF⊥AF.又 PA⊥面ABCDEF,∴DF⊥平面PAF成立;C中,CF∥AB,AB⊂平面PAB,CF⊄平面PAB,∴CF∥平面PAB;而D中CF与AD不垂直,故选D.4.如图所示,在正方形ABCD中,E,F分别是BC和CD的中点,G是EF的中点,现在沿着AE和AF及EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为H,那么,在四面体A-EFH中必有()A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面答案A解析 AD⊥DF,AB⊥BE,又 B,C,D重合记为H,∴AH⊥HF,AH⊥HE.∴AH⊥面EFH.5.如图所示,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC答案D解析因为BC∥DF,所以BC∥平面PDF,A成立;易证BC⊥平面PAE,BC∥DF,所以结论B,C均成立;点P在底面ABC内的射影为△ABC的中心,不在中位线DE上,故结论D不成立.6.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°C.CA′与平面A′BD所成的角为30°D.四面体A′-BCD的体积为答案B解析取BD的中点O, A′B=A′D,∴A′O⊥BD,又平面A′BD⊥平面BCD,∴A′O⊥平面BCD. CD⊥BD,∴OC不垂直于BD,假设A′C⊥BD, OC为A′C在平面BCD内的射影,∴OC⊥BD,矛盾,∴A′C不垂直于BD.A错误; CD⊥BD,平面A′BD⊥平面BCD,∴CD⊥平面A′BD,A′C在平面A′BD内的射影为A′D, A′B=A′D=1,BD=,∴A′B⊥A′D,∴A′B⊥A′C,B正确;∠CA′D为直线CA′与平面A′BD所成的角,∠CA′D=45°,C错误;VA′-BCD=S△A′BD·CD=,D错误,故选B.7.如图所示,在四棱锥P-ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E,F分别为PC,BD的中点.(1)证明:EF∥平面PAD;(2)证明:平面PDC⊥平面PAD;(3)求四棱锥P—ABCD的体积.答案(1)略(2)略(3)解析(1)如图所示,连接AC. 四边形ABCD为矩形且F是BD的中点,∴F也是AC的中点.又E是PC的中点,EF∥AP, EF⊄平面PAD,PA⊂平面PAD,∴EF∥平面PAD.(2)证明: 面PAD⊥平面ABCD,CD⊥AD,平面PAD∩平面ABCD=AD,∴CD⊥平面PAD. CD⊂平面PDC,∴平面PDC⊥平面PAD.(3)取AD的中点为O.连接PO. 平面PAD⊥平面ABCD,△PAD为等腰直角三角形,∴PO⊥平面ABCD,即PO为四棱锥P—ABCD的高. AD=2,∴PO=1.又AB=1,∴四棱锥P—ABCD的体积V=PO·AB·AD=.8.如图所示,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D为AB的中点,且CD⊥DA1.(1)求证:BB1⊥平面ABC;(2)求证:BC1∥平面CA1D;(...