电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标)高考数学大一轮复习 第七章 立体几何 46 空间点、直线、平面之间的位置关系课时作业 理-人教版高三全册数学试题VIP免费

(新课标)高考数学大一轮复习 第七章 立体几何 46 空间点、直线、平面之间的位置关系课时作业 理-人教版高三全册数学试题_第1页
1/6
(新课标)高考数学大一轮复习 第七章 立体几何 46 空间点、直线、平面之间的位置关系课时作业 理-人教版高三全册数学试题_第2页
2/6
(新课标)高考数学大一轮复习 第七章 立体几何 46 空间点、直线、平面之间的位置关系课时作业 理-人教版高三全册数学试题_第3页
3/6
课时作业46空间点、直线、平面之间的位置关系一、选择题1.若直线a∥b,且a∥平面α,则b与α的位置关系是()A.一定平行B.不平行C.平行或相交D.平行或直线在平面内解析:注意不要遗漏直线在平面内的情况.答案:D2.对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线解析:不论l∥α,l⊂α还是l与α相交,α内都存在直线m使得m⊥l.答案:C3.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直解析:两条平行线中一条与第三条直线垂直,另一条直线也与第三条直线垂直,故选D.答案:D4.如图所示,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为()A.B.-C.D.-解析:延长CD至点H,使DH=1,连接HG,HF,则HF∥AD,且HF=DA=2,又 GF=,HG=,∴cos∠HFG==.答案:A5.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是()A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.答案:D6.已知a,b,c为三条不同的直线,且a⊂平面M,b⊂平面N,M∩N=c.①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有M⊥N.其中正确命题的个数是()A.0B.1C.2D.3解析:命题①③正确,命题②④错误.其中命题②中a和b有可能垂直;命题④中当b∥c时,平面M,N有可能不垂直,故选C.答案:C二、填空题7.三条直线可以确定三个平面,这三条直线的公共点个数是________.解析:因三条直线可以确定三个平面,所以这三条直线有两种情况:一是两两相交,有1个交点;二是互相平行,没有交点.答案:0或18.(2016·福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是______(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①9.(2016·揭阳模拟)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为________.解析:如图,取A1C1的中点D1,连接B1D1,因为D是AC的中点,所以B1D1∥BD,所以∠AB1D1即为异面直线AB1与BD所成的角.连接AD1,设AB=a,则AA1=a,所以AB1=a,B1D1=a,AD1==a.所以,在△AB1D1中,由余弦定理得,cos∠AB1D1===,所以∠AB1D1=60°.答案:60°三、解答题10.如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC綊AD,BE綊FA,G、H分别为FA、FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C、D、F、E四点是否共面?为什么?解:(1)证明:由已知FG=GA,FH=HD,可得GH綊AD.又BC綊AD,∴GH綊BC,∴四边形BCHG为平行四边形.(2)由BE綊AF,G为FA中点知,BE綊FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綊CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C、D、F、E四点共面.11.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,∠PBO=60°.(1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.解:(1)在Rt△POB中,∠PBO=60°,因为BO=AB·sin30°=1,又PO⊥OB,所以PO=BO·tan60°=,易得底面菱形的面积为2,所以四棱锥P-ABCD的体积为×2×=2.(2)取AB的中点F,连接EF,DF.因为E是PB的中点,所以EF∥PA,所以∠DEF为异面直线DE与PA所成的角.在Rt△AOB中,AO=ABcos30°==PO,所以在Rt△POA中,PA=,所...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课标)高考数学大一轮复习 第七章 立体几何 46 空间点、直线、平面之间的位置关系课时作业 理-人教版高三全册数学试题

您可能关注的文档

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部