题组层级快练(五十五)1.一枚硬币连掷2次,恰好出现1次正面的概率是()A.B.C.D.0答案A解析列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为=.2.(2015·新课标全国Ⅰ文)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.答案C解析基本事件的总数为10,其中能构成一组勾股数的只有{3,4,5},∴所求概率为,选C.3.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A.B.C.D.答案D解析基本事件的个数有5×3=15,其中满足b>a的有3种,所以b>a的概率为=.4.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A.B.C.D.答案D解析在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB与DE),共有3种,∴所求概率为=.5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,若每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.答案A解析由题意得,甲、乙两位同学参加小组的所有可能的情况共3×3=9种.又两位同学参加同一个兴趣小组的种数为3,故概率为=.6.(2016·孝感二模)某天下课以后,教室里还剩下2位男同学和2位女同学.若他们依次走出教室,则第2位走出的是男同学的概率是()A.B.C.D.答案A解析已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P==.7.(2016·甘肃模拟)投掷两颗骰子,其向上的点数分别为m和n,则复数(m+ni)2为纯虚数的概率为()A.B.C.D.答案C解析投掷两颗骰子共有36种结果,因为(m+ni)2=m2-n2+2mni,所以要使复数(m+ni)2为纯虚数,则有m2-n2=0,即m=n,共有6种结果,所以复数为纯虚数的概率为=,故选C.8.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A.B.C.D.答案D解析基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为.9.(2016·惠州调研)设A,B两名学生均从两位数学教师和两位英语教师中选择一位教师给自己来补课,若A,B不选同一位教师,则学生A选择数学教师,学生B选择英语教师的概率为()A.B.C.D.答案A解析设两位数学教师用1,2表示,两位英语教师用3,4表示,不妨让A先选,B后选(不重复),则他们所有的选择结果如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情况,其中学生A选择数学教师,学生B选择英语教师(数学在前,英语在后)的结果有(1,3),(1,4),(2,3),(2,4),共4种情况,所以所求概率P=.10.从集合{a,b,c,d,e}的所有子集中任取一个,则该子集恰是集合{a,b,c}的子集的概率是________.答案11.(2014·新课标全国Ⅱ文)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.答案解析甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P==.12.盒中有3张分别标有1,2,3的卡片,从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为________.答案解析对立事件为:两次抽的卡片号码中都为奇数,共有2×2=4种抽法.而有放回的两次抽了卡片共有3×3...