电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

实数2-(2)VIP免费

实数2-(2)_第1页
1/3
实数2-(2)_第2页
2/3
实数2-(2)_第3页
3/3
§2.6实数(二)教学目标(一)知识目标:1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式.(二)能力训练目标:1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观目标:时代在进步,科学在发展,只靠在学校积累的知识已远远不能适应时代的要求,因此在校学习期间应培养学生的能力,具备某种能力之后就能应付日新月异的新问题.其中类比的学习方法就是一种学习的能力,本节课旨在让学生通过在有理数范围内的法则,类比地学习在实数范围内的有关计算,重要的是培养这种类比学习的能力,使得学生在以后的学习和工作中能轻松完成任务.教学重点1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:.并能用规律进行计算.教学难点1.类比的学习方法.2.发现规律的过程.教学过程一.新课导入上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.二.新课讲解1.有理数的运算法则在实数范围内仍然适用.大家先回忆一下我们在有理数范围内学过哪些法则和运算律.(加、减、乘、除运算法则,加法交换律,结合律,分配律.)下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了.如:,所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题.1例:计算:(1);(2);(3)(2)2;(4).解:(1)原式=1+1=2;(2)原式=0;(3)原式=22·()2=4×5=20;(4)原式=()2+2··+()2=2+2+.2.做一做(书上48页)请同学们先计算,然后分组讨论找出规律.通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?总结:(a≥0,b≥0);(a≥0,b>0)化简:(1);(2)-4;(3)(-1)2;(4);(5).解:(1)(2)3.例题讲解[例题]化简:(书上49页例题)三.课堂练习(一)随堂练习(二)补充练习1.化简:(1);(2)(1+)(-2);(3);(4);(5);(6).解:(1);(2)(1+)(-2)=-2+()2-2=-2+5-2=3-;(3);(4);(5);(6)=4+10=14.2.一个直角三角形的两条直角边长分别为cm和cm,求这个直角三角形的面积.2解:S=答:这个三角形的面积为7.5cm2.四.课时小结五.课后作业:习题2.9六.活动与探究下面的每个式子各等于什么数?.由此能得到一般的规律吗?对于一个实数a、一定等于a吗?3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部