3.3排序不等式课后训练1.已知a,b,c∈R+,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)的正负情况是().A.大于零B.大于或等于零C.小于零D.小于或等于零2.在△ABC中,∠A,∠B,∠C所对的边依次为a,b,c则aAbBcCabc++++__________π3.(填“≥”或“≤”)3.已知a,b,c都是正数,则abcbccaab+++++________.4.设x,y,z∈R+,求证:2222220zxxyyzxyyzzx---+++++.5.设a,b,c为某三角形三边长,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.6.设a,b,c是正实数,求证:3()abcabcabcabc++.7.设a,b,c都是正实数,用排序不等式证明:2222abcabcbccaab+++++++.8.设a1,a2,…,an;b1,b2,…,bn为任意两组实数,如果a1≤a2≤…≤an,且b1≤b2≤…≤bn,求证:11221212nnnnabababaaabbbnnn+++++++++当且仅当a1=a2=…=an或b1=b2=…=bn时,等号成立.设a,b,c∈R+,求证:222222222222abbccaabcabccabbccaab+++++++++.参考答案1.答案:B解析:设a≥b≥c>0,所以a3≥b3≥c3,根据排序原理,得a3×a+b3×b+c3×c≥a3b+b3c+c3a.又知ab≥ac≥bc,a2≥b2≥c2,所以a3b+b3c+c3a≥a2bc+b2ca+c2ab.所以a4+b4+c4≥a2bc+b2ca+c2ab,即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.2.答案:≥解析:不妨设a≥b≥c,则有A≥B≥C.由排序不等式可得1aA+bB+cC≥aA+bB+cC,aA+bB+cC≥aB+bC+cA,aA+bB+cC≥aC+bA+cB.将以上三个式子两边分别相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=(a+b+c)π,所以π3aAbBcCabc++++.3.答案:32解析:设a≥b≥c>0,所以111bccaab+++.由排序原理,知abcbcabccaabbccaba++++++++++,①abccabbccaabbccaab++++++++++.②①+②,得32abcbccaab+++++.4.证明:所证不等式等价于222zyxxyxzyz+++++222xyzxyyzzx+++++.不妨设x≤y≤z,则x2≤y2≤z2,x+y≤x+z≤y+z.则111xyxzyz+++.于是上式的左边为顺序和,右边为乱序和,由排序不等式知此式成立.5.证明:不妨设a≥b≥c>0.易证a(b+c-a)≤b(c+a-b)≤c(a+b-c).根据排序原理,得a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤a×b(c+a-b)+b×c(a+b-c)+c×a(b+c-a)≤3abc.6.证明:不妨设a≥b≥c>0,则lga≥lgb≥lgc,据排序不等式,有alga+blgb+clgc≥blga+clgb+algc,alga+blgb+clgc≥clga+algb+blgc,且alga+blgb+clgc=alga+blgb+clgc,以上三式相加整理,得3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc),即lg(aabbcc)≥lg3abc++(abc).故3()abcabcabcabc++.27.证明:不妨设a≥b≥c,则a2≥b2≥c2,且111bccaab+++,由排序原理,得222abcbccaab+++++222bcabccaab++,+++222abcbccaab+++++222cabbccaab+++++,两式相加得2222abcbccaab+++++222222bccaabbccaab++++++++.(*)又由柯西不等式得(1·b+1·c)2≤(12+12)(b2+c2),∴222bcbcbc+++.同理,222222cacaababcaab++++,++.因此,代入(*)式得2222abcbccaab+++++≥a+b+c,因此,不等式得证.8.证明:由题设a1≤a2≤…≤an,b1≤b2≤…≤bn,则由排序原理得a1b1+a2b2+…+anbn=a1b1+a2b2+…+anbn,a1b1+a2b2+…+anbn≥a1b2+a2b3+…+anb1,a1b1+a2b2+…+anbn≥a1b3+a2b4+…+an-1b1+anb2,…a1b1+a2b2+…+anbn≥a1bn+a2b1+…+anbn-1.将上述n个式子相加,两边同除以n2,得:11221212nnnnabababaaabbbnnn+++++++++当且仅当a1=a2=…=an或b1=b2=…=bn时,等号成立.9.证明:不妨设a≥b≥c>0,于是a2≥b2≥c2,111cba,应用排序不等式,得a2×1a+b2×1b+c2×1c≤a2×1b+b2×1c+c2×1a,a2×1a+b2×1b+c2×1c≤a2×1c+b2×1a+c2×1b.3以上两个同向不等式相加再除以2,即得222222222abbccaabccab+++++++.再由数组a3≥b3≥c3>0,111bccaab,仿上可证222222abbcca+++222222caabcbbccaab++++.综上,可证222222222222abbccaabcabccabbccaab+++++++++.4