课时分层作业(二十)(建议用时:40分钟)一、选择题1.已知点M是平面α内的动点,F1,F2是平面α内的两个定点,则“点M到点F1,F2的距离之和为定值”是“点M的轨迹是以F1,F2为焦点的椭圆”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件C[若点M到点F1,F2的距离之和恰好为F1,F2两点之间的距离,则点M的轨迹不是椭圆,所以前者不能推出后者.根据椭圆的定义,椭圆上的点到两焦点的距离之和为常数2a,所以后者能推出前者,故前者是后者的必要不充分条件,故选C.]2.椭圆+=1的焦点坐标是()A.(±5,0)B.(0,±5)C.(0,±12)D.(±12,0)C[由标准方程知,椭圆的焦点在y轴上,且c2=169-25=144,∴c=±12,故焦点为(0,±12).]3.已知P为椭圆C上一点,F1,F2为椭圆的焦点,且|F1F2|=2,若|PF1|与|PF2|的等差中项为|F1F2|,则椭圆C的标准方程为()A.+=1B.+=1或+=1C.+=1D.+=1或+=1B[ 2c=|F1F2|=2,∴c=. 2a=|PF1|+|PF2|=2|F1F2|=4,∴a=2.∴b2=a2-c2=9.故椭圆C的标准方程是+=1或+=1.]4.设F1,F2是椭圆+=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=2∶1,则△F1PF2的面积等于()A.5B.4C.3D.1B[由椭圆方程,得a=3,b=2,c=,∴|PF1|+|PF2|=2a=6,又|PF1|∶|PF2|=2∶1,∴|PF1|=4,|PF2|=2,由22+42=(2)2,可知△F1PF2是直角三角形,故△F1PF2的面积为|PF1|·|PF2|=×4×2=4,故选B.]5.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13D.15B[由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7.]二、填空题6.已知椭圆中心在坐标原点,焦点在x轴上,椭圆与x轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为____________.1+=1[由题意知解得则b2=a2-c2=3,故椭圆的标准方程为+=1.]7.在平面直角坐标系xOy中,已知△ABC的顶点A(-4,0),B(4,0),点C在椭圆+=1上,则=________.[由题意知|AB|=8,|AC|+|BC|=10,所以===.]8.已知P是椭圆+=1上的一点,F1,F2是椭圆的两个焦点,且∠F1PF2=30°,则△F1PF2的面积是________.8-4[由椭圆的标准方程,知a=,b=2,∴c==1,∴|F1F2|=2.又由椭圆的定义,知|PF1|+|PF2|=2a=2.在△F1PF2中,由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos∠F1PF2,即4=(|PF1|+|PF2|)2-2|PF1|·|PF2|-2|PF1|·|PF2|cos30°,即4=20-(2+)|PF1|·|PF2|,∴|PF1|·|PF2|=16(2-).∴S=|PF1|·|PF2|sin∠F1PF2=×16(2-)×=8-4.]三、解答题9.已知椭圆的中心在原点,两焦点F1,F2在x轴上,且过点A(-4,3).若F1A⊥F2A,求椭圆的标准方程.[解]设所求椭圆的标准方程为+=1(a>b>0).设焦点F1(-c,0),F2(c,0)(c>0). F1A⊥F2A,∴F1A·F2A=0,而F1A=(-4+c,3),F2A=(-4-c,3),∴(-4+c)·(-4-c)+32=0,∴c2=25,即c=5.∴F1(-5,0),F2(5,0).∴2a=|AF1|+|AF2|=+=+=4.∴a=2,∴b2=a2-c2=(2)2-52=15.∴所求椭圆的标准方程为+=1.10.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.[解]由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4>2.由椭圆的定义可知,曲线C是以M,N为左、右焦点的椭圆(左顶点除外),则a=2,c=1,故b2=a2-c2=4-1=3,故所求C的方程为+=1(x≠-2).11.(多选题)下列说法中错误的是()A.已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆B.已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆C.平面内到点F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆2D.平面内到点F1(-4,0),F2(4,0)距离相等的点的轨迹是椭圆ABD[A中...