第一章统计案例1.1回归分析的基本思想和初步应用1.1.1回归分析的基本思想和初步应用学习目标•[1]通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用•[2]从相关指数和残差分析角度探讨回归模型的拟合效果•[3]了解评价回归效果的两个统计量:相关指数、残差和残差平方和,掌握建立回归模型的基本步骤复习引入复习引入1.变量之间的两种关系问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-------有一个确定性的关系?复习引入复习引入1.变量之间的两种关系问题2:某水田水稻产量y与施肥量x之间是否-------有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习引入复习引入自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。(1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。(2):1.变量之间的两种关系---相关关系复习引入复习引入2.现实生活中存在着大量的相关关系。如:人的身高与年龄;如:人的身高与年龄;产品的成本与生产数量;产品的成本与生产数量;商品的销售额与广告费;商品的销售额与广告费;家庭的支出与收入。等等家庭的支出与收入。等等复习引入复习引入3.回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是:首先根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;复习引入复习引入4.最小二乘法:ˆˆˆy=bx+a(x,y)称为样本点的中心。ˆˆˆn(x-x)(y-y)iii=1b=n2(x-x)ii=1a=y-bx.nn11其中x=x,y=y.iinni=1i=1niii=1n22ii=1xy-nxy=,x-nx3.对两个变量进行的线性分析叫做线性回归分析。5.回归直线方程:ˆˆˆnniiiii=1i=1nn222iii=1i=1(x-x)(y-y)x-nxyb==,(x-x)x-nxa=y-bxy2.相应的直线叫做回归直线。1.所求直线方程叫做回归直---线方程;其中ˆˆˆy=bx+a例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。探究新知探究新知172.85849.0ˆxy分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.ˆ学身高172cm女大生体重y=0.849×172-85.712=60.316(kg)3.回归方程:散点图;思考:身高为172cm的女大学生的体重一定是60.316kg吗?从散点图可观察出,女大学生的体重和身高之间的关系并不能用一次函数来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系).在数据表中身高为165cm的3名女大学生的体重分别为48kg、57kg和61kg,如果能用一次函数来描述体重与身高的关系,那么身高为165cm的3名女在学生的体重应相同.其中a和b为模型的未知参数,e称为随机误差。思考:产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果越好。函数模型:abxy回归模型:eabxy线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量Y称为预报变...