电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

6.5相似三角形的性质-(2)VIP免费

6.5相似三角形的性质-(2)_第1页
1/14
6.5相似三角形的性质-(2)_第2页
2/14
6.5相似三角形的性质-(2)_第3页
3/14
*4.5相似三角形判定定理的证明第四章图形的相似导入新课讲授新课当堂练习课堂小结学习目标1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)导入新课问题:相似三角形的判定方法有哪些?①两角对应相等,两三角形相似.②两边对应成比例且夹角相等,两三角形相似.③三边对应成比例,两三角形相似.讲授新课证明相似三角形的判定定理一在上两节中,我们探索了三角形相似的条件,稍候我们将对它们进行证明.定理1:两角分别相等的两个三角形相似.已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B'.求证:△ABC∽△A'B'C'.A′B′C′ABCA′B′C′ABC证明:在△ABC的边AB(或它的延长线)上截取AD=A'B',过点D作BC的平行线,交AC于点E,则∠1=B∠,∠2=∠C,过点D作AC的平行线,交BC于点F,则∴∴∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形.∴DE=CF.∴∴EDF.ADAEABACADCFABCB,.AECFACCBAEDEACCB,.ADAEDEABACBC12而∠1=∠B,∠DAE=∠BAC,∠2=∠C,∴△ADE∽△ABC.∵∠A=∠A',∠ADE=∠B=∠B',AD=A'B',∴△ADE△A'B'C'.∴△ABC∽△A'B'C.A′B′C′ABCEDF12定理2:两边成比例且夹角相等的两个三角形相似.已知:如图,在△ABC和△A'B'C'中,∠A=∠A',求证:△ABC∽△A'B'C'.''''CAACBAABA′B′C′ABCED12证明:在△ABC的边AB(或它的延长线)上截取AD=A'B',过点D作BC的平行线,交AC于点E,则则∠B=∠1,∠C=2∠,∴△ABC∽△ADE∴∵,AD=A'B',∴∴∴AE=A'C'.而∠A=∠A',∴△ADE≌△A'B'C'.△ABC∽△A'B'C'..ABACADAE''''CAACBAAB.''CAACADAB.''CAACAEACA′B′C′ABCED12定理3:三边成比例的两个三角形相似.已知:如图,在△ABC和△A'B'C'中,求证:△ABC∽△A'B'C'.''''''CAACCBBCBAABA′B′C′ACEDB证明:在△ABC的边AB(或它的延长线)上截取AD=A'B',过点D作BC的平行线,交AC于点E,则∵,AD=A'B',AE=A'C',∴而∠BAC=∠DAE,∴△ABC∽△ADE.∴又,AD=A'B',∴∴∴DE=B'C'.∴△ADE△△A'B'C'.∴△ABC∽△A'B'C'.A′B′C′ACEDB''''CAACBAABABACADAE,.DEBCADAB''''CBBCBAAB.''CBBCADAB.CBBCDEBC''相似三角形判定定理的运用二例:已知:如图,∠ABD=∠C,AD=2,AC=8,求AB.CDAB解:∵∠A=∠A,∠ABD=∠C,∴△ABD∽△ACB,∴AB:AC=AD:AB,∴AB2=AD·AC.∵AD=2,AC=8,∴AB=4.1.如下图,在大小为4×4的正方形网格中,是相似三角形的是()①②③④①③当堂练习2.已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=,求AD的长.217解:∵AB=6,BC=4,AC=5,CD=∴又∠B=∠ACD,∴△ABC∽△DCA,∴∴AD=ABCD.217.ACCDBCAB.ADACACBC.425相似三角形判定定理的证明定理1:两角分别相等的两个三角形相似.定理的运用定理证明定理2:两边成比例且夹角相等的两个三角形相似.定理3:三边成比例的两个三角形相似.课堂小结

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

6.5相似三角形的性质-(2)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部