7.2.2用坐标表示平移问题1什么叫做平移?平移后得到的新图形与原图形有什么关系?回顾旧知引入新课把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移;平移后图形的位置改变,形状、大小不变.问题2如图,能画出把鱼往左平移6个单位长度后所得的图形吗?提示:鱼往左平移6个单位长度,就是把相应的关键点向左平移6个单位长度.回顾旧知引入新课想一想图形平移,图形的大小不变,但位置发生了变化,那图形上点的坐标也随着发生了怎样的变化呢?回顾旧知引入新课问题3(1)如图2,将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,观察坐标的变化,你能从中发现什么规律吗?把点A向上平移4个单位长度呢?探究发现合作交流问题3(2)把点A向左或向下平移4个单位长度,观察坐标的变化,你能从中发现什么规律吗?(3)再找几个点,对它们进行平移,观察它们的坐标是否按你发现的规律变化?探究发现合作交流点A(-2,-3)向右平移5个单位长度,得到点A1,它的坐标是(3,-3).观察点A,点A1的坐标可以发现:点A1的横坐标等于点A的横坐标加5,点A1的纵坐标等于点A的纵坐标.类似地,将点A向上或向左或向下平移某个单位长度,找出平移后得到的点的坐标与点A的坐标的关系.然后再找几个点,对它们进行平移,发现前面的变化规律仍然成立.探究发现合作交流说说点或图形的平移引起点的坐标的变化规律?在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点的坐标是(x+a,y)或(x-a,y);将点(x,y)向上(或下)平移b个单位长度,可以得到对应点的坐标是(x,y+b)或(x,y-b).探究发现合作交流问题4如图,如何沿坐标轴方向平移A(-2,1)得到A1?点A先向右平移5个单位长度,再向下平移3个单位长度;或将点A先向下平移3个单位长度,再向右平移5个单位长度.问题5如图4,正方形ABCD四个顶点的坐标分别是A(-2,4),B(-2,3),C(-1,3),D(-1,4),将正方形ABCD向下平移7个单位长度,再向右平移8个单位长度,两次平移后四个顶点相应变为点E,F,G,H.(1)点E,F,G,H的坐标分别是什么?问题5如图4,正方形ABCD四个顶点的坐标分别是A(-2,4),B(-2,3),C(-1,3),D(-1,4),将正方形ABCD向下平移7个单位长度,再向右平移8个单位长度,两次平移后四个顶点相应变为点E,F,G,H.(2)如果直接平移正方形ABCD,使点A移到点E,它和我们前面得到的正方形位置相同吗?点E,F,G,H的坐标分别是:(6,-3),(6,-4),(7,-4),(7,-3).若直接平移正方形ABCD,使点A移到点E,它就和我们前面得到的正方形位置相同.(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1,B1,C1,点A1,B1,C1坐标分别是什么?并画出相应的三角形A1B1C1.探究发现合作交流问题6如图,三角形ABC三个顶点的坐标分别是:A(4,3),B(3,1),C(1,2).(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系,为什么?(3)若三角形ABC三个顶点的横坐标都加5,纵坐标不变呢?探究发现合作交流问题6如图,三角形ABC三个顶点的坐标分别是:A(4,3),B(3,1),C(1,2).解:A1(-2,3),B1(-3,1),C1(-5,2),即三角形ABC向左平移了6个单位长度,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同.用类比的思想,把三角形ABC三个顶点的横坐标都加5,纵坐标不变,即三角形ABC向右平移了5个单位长度,因此所得三角形与三角形ABC的大小、形状完全相同.问题7如图,将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,猜想:三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?探究发现合作交流用类比的思想,探究得到三角形A2B2C2与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向下平移5个单位长度.探究发现合作交流问题8如图,将三角形ABC三个顶点的横坐标都减去6,同时纵坐标减去5,又能得到什么结论?探究发现合作交流将三角形ABC三个顶点的横坐标都减去6,同时纵坐标减去5,分别得到的点的坐标是(-2,-2),(-5,-3),(-3,-4),依次连接这三点,可以发现所得...