正方形的性质1教学目标:1、会归纳正方形的特性并进行证明;2、能运用正方形的性质定理进行简单的计算与证明;3、在进行探索、猜想、证明的过程中,进一步体会证明的必要性以及计算与证明在解决问题中的作用;4、在比较、归纳、总结的过程中,进一步体会特殊与一般之间的辩证关系。教学重、难点重点:经历观察、实验、猜想、证明等活动,发展合情推理能力和初步的演绎推理能力难点:有条理地、清晰地阐述自己的观点。教学过程:一、情境创设这是一个流传在世界各地的故事,三姐妹的父亲是一位慈祥的阿拉伯老人。一天,老人不幸去世,临终,老人留给三个女儿一件珍贵的传家宝——一块五色斑斓的正方形地毯,深爱父亲的女儿们都想得这块地毯,以作纪念。大姐想出了一个好办法:“把它裁成三个小正方形地毯,为了不使地毯剪得过于零碎,最好只剪成4块,其中两块是正方形,另外两块可以拼成一个正方形。”聪明的你能想出一个巧妙的剪法,符合大姐的设想吗?二、合作交流探索正方形的性质(1)边的性质:;(2)角的性质:;(3)对角线的性质:;(4)对称性:。三、典例分析例1已知:如图,正方形ABCD的对角线AC、BD相交于点O;正方形A’B’C’D’的顶点A’与点O重合,A’B’交BC于点E,A’D’交CD于点F,E是BC的中点。(1)求证:F是CD的中点(2)若正方形A’B’C’D’绕点O任意旋转某个角度后,OE=OF吗?21世纪教育网1(第18题)A1A2A3A4FEO(A')ABCDB'D'C'练习1、如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A、cm2B、cm2C、cm2D、cm2例2、已知,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证:AF=BC+FC.例3、求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。21世纪教育网例4、已知正方形ABCD。(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH;[来源:21世纪教育网](2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交2FEO(A')ABCDB'D'C'CBEADFAD、BC于点E、F,交AB、CD于点G、H,EF与GH相等吗?请写出你的结论;(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m、n,m与AD、BC的延长线分别交于点E、F,n与AB、DC的延长线分别交于点G、H,试就该图对你的结论加以证明。四、小结(1)正方形与矩形,菱形,平行四边形的关系如下图。(请填写它们之间的关系)(2)正方形的性质:①正方形对边平行;②正方形四边相等;③正方形四个角都是直角。④正方形既是轴对称图形,又是中心对称图形;⑤正方形对角线相等,互相垂直平分,每条对角线平分一组对。(3)本节课我们把探索和解决问题的思路、方法、结论,从特殊情形逐步推广到一般的情形,从而得到一般的结论,这也是我们获得数学结论的一种重要的思想方法。3