电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

一元二次方程知识点及考点精析VIP免费

一元二次方程知识点及考点精析_第1页
1/10
一元二次方程知识点及考点精析_第2页
2/10
一元二次方程知识点及考点精析_第3页
3/10
一元二次方程知识点及考点精析一、知识结构:一元二次方程二、考点精析考点一、概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。(2)一般表达式:其中是二次项,叫二次项系数;是一次项,叫一次项系数,是常数项。二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例1、下列方程中是关于x的一元二次方程的是()ABCD变式:当k时,关于x的方程是一元二次方程。例2、方程是关于x的一元二次方程,则m的值为。针对练习:★1、方程的一次项系数是,常数项是。★2、若方程是关于x的一元一次方程,⑴求m的值;⑵写出关于x的一元一次方程。★★3、若方程是关于x的一元二次方程,则m的取值范围是。★★★4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。⑵应用:利用根的概念求代数式的值;例1、已知的值为2,则的值为。例2、关于x的一元二次方程的一个根为0,则a的值为。例3、已知关于x的一元二次方程的系数满足,则此方程必有一根为。例4、已知是方程的两个根,是方程的两个根,则m的值为。针对练习:★1、已知方程的一根是2,则k为,另一根是。★2、已知关于x的方程的一个解与方程的解相同。⑴求k的值;⑵方程的另一个解。1典型例题:★3、已知m是方程的一个根,则代数式。★★4、已知是的根,则。★★5、方程的一个根为()AB1CD★★★6、若。考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例1、解方程:=0;例2、若,则x的值为。针对练习:下列方程无解的是()A.B.C.D.类型二、因式分解法:依据A.B=0则A=0或B=0因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如,,典型例题:例1.解方程(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2例2.已知9a2-4b2=0,求代数式22ababbaab的值.例3、的根为()ABCD2例4、若,则4x+y的值为。变式1:。变式2:若,则x+y的值为。变式3:若,,则x+y的值为。例3、方程的解为()A.B.C.D.例4、解方程:例6、已知,则的值为。变式:已知,且,则的值为。针对练习:★1、下列说法中:①方程的二根为,,则②.③④⑤方程可变形为正确的有()A.1个B.2个C.3个D.4个★2、以与为根的一元二次方程是()A.B.C.D.★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:★★4、若实数x、y满足,则x+y的值为()A、-1或-2B、-1或2C、1或-2D、1或25、方程:的解是。★★★6、已知,且,,求的值。★★★7、方程的较大根为r,方程的较小根为s,则s-r的值为。类型三、配方法配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.关键:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:3例1.用配方法解下列关于x的方程(1)x2-8x+1=0(2)x2-2x-12=0(3)2x2+1=3x(4)3x2-6x+4=0(5)(1+x)2+2(1+x)-4=0例2.试用配方法说明的值恒大于0。例3.已知x、y为实数,求代数式的最小值。例4.已知为实数,求的值。例5.分解因式:针对练习:一、选择题1.配方法解方程2x2-43x-2=0应把它先变形为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

一元二次方程知识点及考点精析

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部