第一章综合素质检测时间120分钟,满分150分。一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.经过对随机变量K2的研究,得到了若干个临界值,当其观测值k≤2.072时,对于两个事件A与B,我们认为()A.有95%的把握认为A与B有关系B.有99%的把握认为A与B有关系C.没有充分理由说明事件A与B有关系D.确定事件A与B没有关系[答案]C[解析]依临界值表排除A、B,选项D不正确,故选C.2.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93.用这个模型预测这个孩子10岁时的身高,则正确的叙述是()A.身高一定是145.83cmB.身高在145.83cm以上C.身高在145.83cm以下D.身高在145.83cm左右[答案]D[解析]线性回归方程只能近似描述,不是准确值.3.某市政府调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3000人,计算发现K2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游愿望有关系的可信程度是()P(K2≥k)…0.250.150.100.0250.0100.005…k…1.3232.0722.7065.0246.6357.879…A.90%B.95%C.97.5%D.99.5%[答案]C[解析] K2=6.023>5.024,故其可信度为97.5%.4.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见下表,则实验效果与教学措施()实验效果教学措施优、良、中差总计实验班48250对比班381250总计8614100A.有关B.无关C.关系不明确D.以上都不正确[答案]A[解析]由公式计算得K2=≈8.306>6.635,则认为“实验效果与教学措施有关”的概率为0.99.5.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:喜爱打篮球不喜爱打篮球总计1男生19625女生91625总计282250根据表中的数据及K2的公式,算得K2≈8.12.临界值表:P(K2>k0)0.1000.0500.0250.0100.0050.001k02.7063.8415.0246.6357.87910.828根据临界值表,你认为喜爱打篮球与性别之间有关系的把握是()A.97.5%B.99%C.99.5%D.99.9%[答案]C[解析]∴7.8790(或b<0),故①④错.8.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表2,则与性别有关联的可能性最大的变量是()表1成绩性别不及格及格总计男614202女102232总计163652表2视力性别好差总计男41620女122032总计163652表3智商性别偏高正常总计男81220女82432总计163652表4阅读量性别丰富不丰富总计男14620女23032总计163652A.成绩B.视力C.智商D.阅读量[答案]D[解析]因为K==,K==,K==,K==,则K>K>K>K,所以阅读量与性别有关联的可能性最大.9.已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程y=bx+a必过()A.(2,2)点B.(1.5,0)点C.(1,2)点D.(1.5,4)点[答案]D[解析]计算得=1.5,=4,由于回归直线一定过(,)点,所以必过(1.5,4)点.10.下面是调查某地区男女中学生是否喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从下图可以看出()3A.性别与是否喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生中喜欢理科的比为60%[答案]C[解析]从图中可以看出,男生喜欢理科的比例为60%,而女生比例为仅为20%,这两个比例差别较大,说明性别与是否喜欢理科是有关系的,男生比女生喜欢理科的可能性更大一些.11.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如...