命题及其关系1.(2015·高考湖南卷)设A,B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.由于A∩B=A⇔A⊆B,所以“A∩B=A”是“A⊆B”的充要条件.2.(选修21P10练习T4(1)改编)“x>4”是“x2-2x-3>0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:选B.因为x2-2x-3>0,所以该不等式的解集为{x|x<-1或x>3},所以x>4⇒x2-2x-3>0.但x2-2x-3>0x>4,所以“x>4”是“x2-2x-3>0”的充分而不必要条件.3.(2015·高考山东卷)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:选D.根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.故选D.4.(选修21P10练习T3(2)改编)“(x-a)(x-b)=0”是“x=a”的________条件.答案:必要不充分5.(选修21P8习题1.1A组T4改编)命题:“若一个三角形的两边不相等,则这两条边所对的角也不相等”的否命题是____________.答案:“若一个三角形的两边相等,则这两条边所对的角也相等”考点一四种命题的相互关系及真假判断[学生用书P8](1)(2014·高考陕西卷)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假(2)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.“若x+y是偶数,则x与y不都是偶数”B.“若x+y是偶数,则x与y都不是偶数”C.“若x+y不是偶数,则x与y不都是偶数”D.“若x+y不是偶数,则x与y都不是偶数”[解析](1)原命题正确,所以逆否命题正确.模相等的两复数不一定互为共轭复数,同时因为逆命题与否命题互为逆否命题,所以逆命题和否命题错误.故选B.(2)由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案](1)B(2)C判断四种命题间关系、真假的方法(1)写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写,当一个命题有大前提时,写其他三个命题时,大前提需要保持不变;(2)当一个命题直接判断真假不容易进行时,可转而判断其逆否命题的真假.1.以下关于命题的说法正确的有______(填写所有正确说法的序号).①命题“若log2a>0,则函数f(x)=logax(a>0且a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=logax在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”互为逆否命题,因此二者等价,所以③正确.综上可知正确的说法有②③.答案:②③m=-2;反之也成立.所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.答案:m=-215.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.解析:由题意知ax2-2ax-3≤0恒成立,当a=0时,-3≤0成立;当a≠0时,得解得-3≤a<0,故-3≤a≤0.答案:[-3,0]16.已知α:x≥a,β:|x-1|<1.若α是β的必要不充分条件,则实数a的取值范围为________.解析:α:x≥a,可看作集合A={x|x≥a},因为β:|x-1|<1,所以0