宜宾市普通高中2017级高三第二次诊断测试理科数学参考答案一、选择题题号123456789101112答案AADBCBCBDACD二、填空题13.45−14.-1115.52−16.①③三、解答题17.解(1)由题意知,所抽取的20人中得分落在组0,20的人数有0.005020202=(人),得分落在组(20,40的人数有0.007520203=(人).所以所抽取的20人中得分落在组0,20的人数有2人,得分落在组(20,40的人数有3人。................................................4分(2)X的所有可能取值为0,1,2()33351010CPXC===,()1223356110CCPXC===,()2123353210CCPXC===...............8分所以X的分布列为X012P110610310所以X的期望1630121.2101010EX=++=...........................................12分18.解(1)令,325nnnnnSba==−,当2n时,111333nnnnnbSS−−=−=−=,当1n=时,113b=,则1253nnnba==−,故352nna+=.......................................................6分(2)114411[](35)[3(1)5]3(35)3(1)5nnaannnn+==−++++++,...........................8分111111[()()()]315325325335353(1)5nTnn=−+−++−+++++++4111[]383(1)56n=−++.................................................................................12分19.解(1)取AC中点M,连接MO,则1MOBB,四边形1MOBB为平行四边形,连接11,MBBD,则1MBBO,即1MBDO,四边形1MBOD为平行四边形,1MDOB,1MD平面1ACD,OB平面1ACD,OB平面1ACD............................................................6分(2)连接11,BCBC相交于F,取1AD中点E,连接,EFCECF⊥平面11BCDA,1111,EFCDCD⊥平面11AAD,EF⊥平面11AAD,1AD平面11AAD,1EFAD⊥,1CEAD⊥,则CEF为所求二面角的平面角,.....................................................10分在RtCFE中2,2,6CFEFCE===,则23sin36CFCEFCE===....................12分20.解:(1)22143xy+=............................................................3分(2)由题不妨设:MNykxm=+联立22143xyykxm+==+方程组解1122(,),(,)MxyNxy消去y化简得222(43)84120kxkmxm+++−=,且21212228412,4343kmmxxxxkk−+=−=++....................................................5分1212kkkk=+121212123333yyyyxxxx−−−−=+,iiykxm=+代入化简得()()()()2212122132330kkxxkmxxmm−+−−++−+=.................................8分283(3)3(3)kmm−=−3,833(3)mkm=−8333km=+....................................................................10分直线83:+33kMNykx=+,8333MN过定点(-,).....................................12分21.解:(1)()cosgxxx=0x(0,)cos0cos0,()0,2xxxxgx当时,,()0,2gx在上单调递增;3()cos0cos0,()0,22xxxxgx当,时,,3()22gx在,上单调递减;3(2)cos0cos0,()0,2xxxxgx当,时,,3()22gx在,上单调递增;................................................4分且33(0)10,()0,()10,()0,(2)102222ggggg===−=−=30,22在,与函数()gx不存在零点;1,,()02xgx=使得,同理23,2,()02xgx=使得综上,()gx在区间()0,2上的零点的个数为2...........................................6分(2)2sincos()xxxfxx+=−由(1)得,()sin+cosgxxxx=在区间3,222与,上存在零点,()fx区间3,222与,上存在极值点12xx,123,,,222xx且满足()0igx=即sincos0(1,2)iiixxxi+==其中,1taniixx=−.............................8分12121212coscos()()sinsinxxfxfxxxxx+=+=−−...........................................9分123222xx又1211xx即12122tantan,tantan=tan()x...