3.1随机事件的概率木柴燃烧,能产生热量吗?明天,地球还会转动吗?石头会被风吹走吗?石头会被风吹走吗?煮熟的鸭子,能跑了吗?问题情境问题1:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?可能发生,也可能不发生必然发生必然不会发生1、随机事件:在一定条件下,可能发生也可能不发生的事件叫随机事件。2、必然事件:在一定条件下,必然要发生的事件叫必然事件。3、不可能事件:在一定条件下,一定不会发生的事件叫不可能事件。确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示。必然事件、不可能事件、随机事件的概念指出下列事件是必然事件,不可能事件,还是随机事件:(1)某地明年1月1日刮西北风;(3)手电筒的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%;随机事件必然事件不可能事件随机事件(5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签;随机事件(2)当x是实数时,;02x(2)概率的定义及其理解随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.实验有人将一枚硬币抛掷5次、50次、500次,各做7遍,观察正面出现的次数及频率.试验序号5nHnfHnf50n22252125241827Hn500n2512492562472512622580.40.60.21.00.20.40.80.440.500.420.480.360.54f0.5020.4980.5120.4940.5240.5160.500.502处波动较大在21处波动较小在21波动最小随n的增大,频率f呈现出稳定性12345672315124例如,历史上的曾做过抛掷硬币的大量重复试验,结果如下表:nmnm抛掷次数()正面向上次数(频数)频率()204810610.5181404020480.50691200060190.501624000120120500530000149840.499672088361240.5011当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.0.9510.9540.940.970.920.9优等品频率19029544701949245优等品数2000100050020010050抽取球数nmnm某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,在它附近摆动。nm某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,在它附近摆动。nm1.频率的定义).(,.,,,AfAnnAnAnnnAA成并记发生的频率称为事件比值生的频数发称为事件发生的次数事件次试验中在这次试验进行了在相同的条件下2.概率的定义在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率.)(Afn概念的理解:(1)求一个事件的概率的基本方法是通过大量的重复试验;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件的概率;A(5)必然事件的概率为1,不可能事件的概率为0.因此10AP频率与概率的关系区别联系频率是变化的,不同的实验,频率可能不同具有随机性反应事件发生的频繁程度当独立重复试验次数增多时,频率值会无限接近概率概率是固定的值具有稳定性反应事件发生的可能性大小,是理论值①从12个同类产品(其中10个正品,两个次品)中,任抽三个产品,则下列事件中哪个是必然事件()A.三个都是正品B.至少有一个是次品C.三个都是次品D.至少有一个是正品D②若在同等条件下进行n次重复实验得到某个事件A发生的频率f(n),则随着n的增大,有()A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数的差的绝对值逐渐减小D.f(n)在某个常数的附近摆动并趋于稳定D③盒中装有4个白球5个黑球,从中任意的取出一个球。(1)“取出的是黄球”是什么事件?概率是多少?(2)“取出的是白球”是什么事件?概率是多少?(3)“取出的是白球或者是黑球”是什么事件?概率是多少?是不可能事件,概率是0是随机事件,概率是4/9是必然事件,概率是1④某射击手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m9194592178455击中靶心的频率(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?0.920.900.950.900.9...