电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

20091023高一数学(对数函数及其性质(第1课时))VIP免费

20091023高一数学(对数函数及其性质(第1课时))_第1页
20091023高一数学(对数函数及其性质(第1课时))_第2页
20091023高一数学(对数函数及其性质(第1课时))_第3页
高一年级数学高一年级数学湖南师大附中彭萍,lg)2(lg)(2bxaxxf2、设函数已知且对一切恒成立,求的最小值.,2)1(f,Rxxxf2)()(xf。则的两根为、已知方程、21212,03lg2lglg)3lg2(lglg1xxxxxx复习巩固情境引入用清水漂洗含1个单位质量污垢的衣服,若每次能洗去污垢的四分之三,试写出漂洗次数y与残留污垢x的关系式.yx)431(y)41(xy41log)0(x一般地,函数y=logax(a>0,且a≠1)叫做对数函数.其中x是自变量.函数的定义域是(0,+∞).1、对数函数的定义:注意:对数函数对底数的限制条件:知识探究a>0,且a≠1知识探究22、探究:对数函数、探究:对数函数::y=logy=logaaxx((aa>>0,0,且且aa≠1)≠1)的图象与性质的图象与性质在同一坐标系中用描点法画出对数函数的图象。xyxy212loglog和作图步骤::①列表,②描点,③用平滑曲线连接。xx1/41/41/21/2112244……y=logy=log22xx-2-2-1-1001122……列表描点作作yy=log=log22xx的的图象图象连线21-1-21240yx32114知识探究列表描点连线21-1-21240yx32114xx1/41/41/21/2112244xy2log221100-1-1-2-2-2-1012xy21log这两个函数的图象有什么关系呢?关于x轴对称………………知识探究定义域定义域::(0,+∞)(0,+∞)值域值域::RR增函数增函数在在(0,+∞)(0,+∞)上是:上是:认真观察函数y=log2x的图象填写下表图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐上升21-1-21240x32114知识探究y认真观察函数的图象填写下表知识探究211421-1-21240yx3xy21log定义域定义域::(0,+∞)(0,+∞)值域值域::RR减函数减函数在在(0,+∞)(0,+∞)上是:上是:图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐下降xyxy313loglog和21-1-21240yx32114xy2logxy21logxy3logxy31log知识探究对数函数的图象。规律:在x轴上方图象自左向右底数越来越大.0<01>1图象图象定义域定义域(0,+(0,+∞)∞)(0,+(0,+∞)∞)值域值域RRRR性质性质①①在在(0,+(0,+∞)∞)上单调上单调递减递减②②0y>00X=1X=1时时y=y=00X>1X>1时时y1X>1时时y>0y>0yx10yx01对数函数对数函数y=logy=logaaxx((aa>>0,0,且且a≠a≠1)1)的图象与性的图象与性质:质:例1求下列函数的定义域:(1)y=log0.5|x+1|;(2)y=log2(4-x);(3).ln(164)xy例2已知函数,求函数f(x)的定义域,并确定其奇偶性.21()log1xfxx例题讲解例3、分别画出函数与的图象.2|log|yx2log||yx例题讲解作业:1、P73练习2(做书上).P74习题2.2A组:7,10,B组:4.2、《学法大视野》第22课时

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

精品文库+ 关注
实名认证
内容提供者

超级好的教育资料

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部