南通数学网初高中课件、教案、习题应有尽有www.ntsxw.com三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥,其表面学科网展开图是三角形,如图,求△的各边长及此三棱锥的体积.zxxk20.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分。设常数,函数(1)若=4,求函数的反函数;(2)根据的不同取值,讨论函数的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35米,长80米,设在同一水平面上,从和看的仰角分别为.(1)设计中是铅垂方向,若要求zxxk,问的长至多为多少(结果精确到0.01米)?(2)施工完成后.与铅垂方向有偏差,现在学科网实测得求的长(结果精确到0.01米)?22(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系中,对于直线:和点记若<0,则称点被直线分隔。若曲线C与直线没有公共点,且曲线C上存在点被直线分隔,则称直线为曲线C的一条分隔线.⑴求证:点被直线分隔;⑵若直线是曲线的分隔线,求实数的取值范围;⑶动点M到点的距离与到轴的距离之积为1,设点M的轨迹为E,求证:通过原点的直线中,有且仅有一条直线是E的分割线.23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,zxxk求的取值范围;(3)若成等差数列,且,学科网求正整数的最大值,以及取最大值时相应数列的公差.19.解:∵由题得,三棱锥是正三棱锥∴侧棱与底边所成角相同且底面是边长为2的正三角形∴由题得,,又∵三点恰好在构成的的三条边上∴∴∴,三棱锥是边长为2的正四面体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于∴为中点,为的重心,底面∴,,20.解:(1)由题得,∴,(2)∵且①∴当时,,∴对任意的都有,∴为偶函数②当时,,,∴对任意的且都有,∴为奇函数③当且时,定义域为,∴定义域不关于原定对称,∴为非奇非偶函数21.解:(1)由题得,∵,且,即,解得,,∴米(2)由题得,,∵,∴米∵,∴米22.证明:(1)由题得,,∴被直线分隔。解:(2)由题得,直线与曲线无交点即无解∴或,∴证明:(理科)(3)由题得,设,∴,化简得,点的轨迹方程为。①当过原点的直线斜率存在时,设方程为。联立方程,。令,,显然是开口朝上的二次函数∴由二次函数与幂函数的图像可得,必定有解,不符合题意,舍去②当过原点的直线斜率不存在时,其方程为。显然与曲线没有交点,在曲线上找两点。∴,符合题意综上所述,仅存在一条直线是的分割线。证明:(文科)(3)由题得,设,∴,化简得,点的轨迹方程为。显然与曲线没有交点,在曲线上找两点。∴,符合题意。∴是的分割线。23.解:(1)由题得,(理科)(2)由题得,∵,且数列是等比数列,,∴,∴,∴。又∵,∴当时,对恒成立,满足题意。当时,①∴当时,,由单调性可得,,解得,②当时,,由单调性可得,,解得,(理科)(3)由题得,∵,且数列成等差数列,,∴,∴,∴又∵,∴∴,∴,解得,,∴的最大值为1999,此时公差为