电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2.3.2双曲线的几何性质[1]VIP免费

2.3.2双曲线的几何性质[1]_第1页
1/14
2.3.2双曲线的几何性质[1]_第2页
2/14
2.3.2双曲线的几何性质[1]_第3页
3/14
2.3.2双曲线的几何性质222bac定义定义图象图象方程方程焦点焦点a.b.ca.b.c的关的关系系||MF1|-|MF2||=2a(0<2a<|F1F2|)F(±c,0)F(0,±c)12222byax12222bxayyxoF2F1MxyF2F1M2008-10-202、对称性一、研究双曲线的简单几何性质)0,0(12222babyax1、范围axaxaxax,,12222即关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授课堂新授3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-b1B2Bb1A2A-aa)0,()0,(21aAaA、顶点是如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长2A1A2B1B(2)实轴与虚轴等长的双曲线叫等轴双曲线(3))0(22mmyxM(x,y)4、渐近线1A2A1B2BN(x,y’)Q:的位置关系它与xaby:的位置的变化趋势它与xaby的下方在xaby慢慢靠近xyoxabyxabyab)0(22xaxaby分的方程为双曲线在第一象限内部xabybabyax的渐近线为双曲线)0,0(12222(1)的渐近线为等轴双曲线)0(22mmyx(2)xy利用渐近线可以较准确的画出双曲线的草图(3)动画演示5、离心率双曲线的叫做的比双曲线的焦距与实轴长,ace离心率。c>a>0e>1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:(2)e的范围:(3)e的含义:11)(2222eacaacab也增大增大且时,当abeabe,),,0(),1(的夹角增大增大时,渐近线与实轴eace222bac二四个参数中,知二可求、、、在ecba(4)等轴双曲线的离心率e=?2(5)的双曲线是等轴双曲线离心率2exyo的简单几何性质二、导出双曲线)0,0(12222babxay-aab-b(1)范围:ayay,(2)对称性:关于x轴、y轴、原点都对称(3)顶点:(0,-a)、(0,a)(4)渐近线:xbay(5)离心率:ace小结小结ax或axayay或)0,(a),0(axabyxbayace)(222bac其中关于坐标轴和原点都对称性质双曲线)0,0(12222babyax)0,0(12222babxay范围对称性顶点渐近线离心率图象例1:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。解:把方程化为标准方程可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:14416922xy1342222xy5342245acexy34例题讲解例题讲解12222byax的方程为解:依题意可设双曲线8162aa,即10,45cace又3681022222acb1366422yx双曲线的方程为xy43渐近线方程为)0,10(),0,10(21FF焦点.4516线和焦点坐标程,并且求出它的渐近出双曲线的方轴上,中心在原点,写焦点在,,离心率离是已知双曲线顶点间的距xe例21、“共渐近线”的双曲线的应用222222221(0)xyabxyab与共渐近线的双曲线系方程为,为参数,λ>0表示焦点在x轴上的双曲线;λ<0表示焦点在y轴上的双曲线。12byax222(a>b>0)12222byax(a>0b>0)222ba(a>0b>0)c222ba(a>b>0)c椭圆双曲线方程abc关系图象yXF10F2MXY0F1F2p小结小结渐近线离心率顶点对称性范围准线|x|a,|y|≤b|x|≥a,yR对称轴:x轴,y轴对称中心:原点对称轴:x轴,y轴对称中心:原点(-a,0)(a,0)(0,b)(0,-b)长轴:2a短轴:2b(-a,0)(a,0)实轴:2a虚轴:2be=ac(0<e<1)ace=(e1)无y=abx±cax2cax2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2.3.2双曲线的几何性质[1]

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部