模块质量检测一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与命题:“若a∈P则b∉P”等价的命题是()A.若a∉P,则b∉PB.若b∉P,则a∈PC.若a∉P,则b∈PD.若b∈P,则a∉P解析:原命题的逆否命题是“若b∈P,则a∉P”.答案:D2.条件甲:“a、b、c成等差数列”是条件乙:“+=2”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:甲⇒乙,如a=-1,b=0,c=1;乙⇒甲,故甲是乙的必要不充分条件.答案:A3.曲线f(x)=x3+x-2在点P0处的切线平行于直线y=4x-1,则点P0的坐标为()A.(1,0)B.(2,8)C.(1,0)和(-1,-4)D.(2,8)和(-1,-4)解析:f′(x0)=3x+1=4,∴x0=±1.答案:C4.以-=-1的焦点为顶点,顶点为焦点的椭圆方程为()A.+=1B.+=1C.+=1D.+=1解析:双曲线-=-1,即-=1的焦点为(0,±4),顶点为(0,±2).所以对椭圆+=1而言,a2=16,c2=12.∴b2=4,因此方程为+=1.答案:D5.函数y=4x2+的单调递增区间为()A.(0,+∞)B.(-∞,1)C.D.(1,+∞)解析:由已知定义域为{x|x≠0},y′=8x-,令y′>0得x>,故选C.答案:C6.若k可以取任意实数,则方程x2+ky2=1所表示的曲线不可能是()A.直线B.圆C.椭圆或双曲线D.抛物线解析:本题主要考查圆锥曲线的一般形式:Ax2+By2=c所表示的圆锥曲线问题,对于k=0,1及k>0且k≠1,或k<0,分别讨论可知:方程x2+ky2=1不可能表示抛物线.答案:D7.函数f(x)=-x3+x2在区间[0,4]上的最大值是()A.0B.-C.D.解析:f′(x)=2x-x2,令f′(x)=0,解得x=0或2.1又 f(0)=0,f(2)=,f(4)=-,∴函数f(x)在[0,4]上的最大值为.答案:C8.若椭圆+=1(a>b>0)的离心率为,则双曲线-=1的离心率为()A.B.C.D.解析:因为椭圆+=1的离心率e1=,所以1-=e=,即=,而在双曲线-=1中,设离心率为e2,则e=1+=1+=,所以e2=.故选B.答案:B9.已知f(2)=-2,f′(2)=g(2)=1,g′(2)=2,则函数(f(x)≠0)在x=2处的导数为()A.-B.C.-5D.5解析:令h(x)=,则h′(x)=,∴h′(2)=-.故选A.答案:A10.已知命题p:|x-1|≥2,命题q:x∈Z,如果p且q、非q同时为假,则满足条件的x为()A.{x|x≤-1或x≥3,x∉Z}B.{x|-1≤x≤3,x∉Z}C.{-1,0,1,2,3}D.{0,1,2}解析: p且q假,非q为假,∴p假q真,排除A,B,p为假,即|x-1|<2,∴-1<x<3且x∈Z.∴x=0,1,2.答案:D11.中心在原点,对称轴为坐标轴的双曲线C的两条渐近线与圆x2+(y-2)2=1都相切,则双曲线C的离心率是()A.或B.2或C.或2D.或解析:设圆的两条过原点的切线方程为y=kx.由=1得k=±.当=时,e===2.当=时,e===.答案:C12.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)解析:f(x)为奇函数,g(x)为偶函数,则f(x)g(x)是奇函数.又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即[f(x)g(x)]′>0,所以F(x)=f(x)·g(x)在(-∞,0)上是增函数,又g(-3)=g(3)=0,故F(-3)=F(3)=0.所以不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).2答案:D二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.曲线y=x3-2在点处切线的倾斜角是________.解析:y′=x2,则曲线在x=-1处的导数为1,所以tanα=1,又因为α是切线的倾斜角,所以α=45°.答案:45°14.已知双曲线的离心率为2,焦点是(-4,0)(4,0),则双曲线的方程为________.解析:由题意知c=4,e==2,故a=2,所以b2=c2-a2=12,双曲线的方程为-=1.答案:-=115.函数f(x)=x+2cosx在区间上的最小值是________.解析: f′(x)=1-2sinx,令f′(x)>0,∴sinx<.当x∈时,sinx<0<,即f′(x)在上恒大于0,∴f(x)在区间上为增函数,∴f(x)min=f=-.答案:-16.已知:①命题“若xy=1,则x,y互为倒数”的逆命题;②命题“所有模相等的向量相...