电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学第一轮基础复习 简单的三角恒等变换课件VIP免费

高考数学第一轮基础复习 简单的三角恒等变换课件_第1页
1/87
高考数学第一轮基础复习 简单的三角恒等变换课件_第2页
2/87
高考数学第一轮基础复习 简单的三角恒等变换课件_第3页
3/87
第五节简单的三角恒等变换重点难点重点:倍角、半角公式及积化和差、和差化积公式,依据这些公式进行三角函数的化简、求值、证明等.难点:公式的灵活运用知识归纳1.半角公式sinα2=±1-cosα2cosα2=±1+cosα2tanα2=±1-cosα1+cosαtanα2=sinα1+cosα=1-cosαsinα2.求值题常见类型(1)“给角求值”:所给出的角常常是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和、差、倍、半公式、和差化积、积化和差公式消去非特殊角转化为特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.3.三角函数的最值问题(1)用三角方法求三角函数的最值常见的函数形式①y=asinx+bcosx=a2+b2sin(x+φ),其中cosφ=aa2+b2,sinφ=ba2+b2.②y=asin2x+bsinxcosx+ccos2x可先降次,整理转化为上一种形式.③y=asinx+bcsinx+d或y=acosx+bccosx+d可转化为只有分母含sinx或cosx的函数式或sinx=f(y)(cosx=f(y))的形式,由正、余弦函数的有界性求解.(2)用代数方法求三角函数的最值常见的函数形式①y=asin2x+bcosx+c可转化为cosx的二次函数式.②y=asinx+cbsinx(a,b,c>0),令sinx=t,则转化为求y=at+cbt(-1≤t≤1)的最值,一般可用基本不等式或单调性求解.高考主要考查可化一角一函形式的和复合二次型.误区警示计算角的三角函数值时,一般要先考虑角的取值范围,使所计算的函数在该范围内单调,以避免讨论,注意发掘隐含的限制角的范围的条件,避免因对隐含条件的疏忽致误.一、函数与方程的思想[例1]已知sinx+siny=13,求sinx-cos2y的最大、最小值.分析:消去sinx得u=13-siny-cos2y可转化为二次函数最值,关键是消元后sinx的范围同时要转化为siny的取值范围.解析:由sinx=13-siny及-1≤sinx≤1得-23≤siny≤1.而sinx-cos2y=sin2y-siny-23=(siny-12)2-1112所以当siny=12时,最小值为-1112,当siny=-23时,最大值为49.点评:求二元函数最大值时,一般需将函数转化为一元函数,故首先要消去一个字母,而sinx=13-siny能提供两种功能,其一是消元,其二是要从此消元式中解出siny的范围,即二次函数的“定义域”,这是本题的难点及易错点,切不可盲目认定-1≤siny≤1.二、角的构造技巧与公式的灵活运用[例2]求sin210°+cos240°+sin10°cos40°的值.解析:解法1:因为40°=30°+10°,于是原式=sin210°+cos2(30°+10°)+sin10°cos(30°+10°)=sin210°+32cos10°-12sin10°2+sin10°·32cos10°-12sin10°=34(sin210°+cos210°)=34.解法2:令sin10°=a+b,cos40°=a-b,则a=12(sin10°+cos40°)=12(sin10°+sin50°)=sin30°cos20°=12cos20°,b=12(sin10°-cos40°)=12(sin10°-sin50°)=cos30°sin(-20°)=-32sin20°.原式=(a+b)2+(a-b)2+(a+b)(a-b)=3a2+b2=34cos220°+34sin220°=34.解法3:设x=sin210°+cos240°+sin10°cos40°,y=cos210°+sin240°+cos10°sin40°.则x+y=1+1+sin10°cos40°+cos10°sin40°=2+sin50°=2+cos40°x-y=cos80°-cos20°-12=-sin50°-12=-cos40°-12,因此,2x=32,x=34.点评:解法1:通过对该题中两个角的特点分析,巧妙地避开了和差化积与积化和差公式.当然运用降次、和积互化也是一般方法.解法2:运用代数中方程的方法,将三角问题代数化处理,解法新颖别致,不拘一格,体现了数学的内在美.解法3:利用正余弦函数的互余对偶,构造对偶式,组成方程组,解法简明.在此基础上,通过分析三角函数式中的角度数之间的特定关系,作推广创新.你能解决下列问题吗?①求sin220°+cos250°+sin20°cos50°的值;求cos273°+cos247°+cos47°cos73°的值;②求si...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学第一轮基础复习 简单的三角恒等变换课件

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部