第1页(共 4页)V B A C D 怎样解关于二面角问题二面角是立体几何中最重要的章节。二面角中的内容综合了线面垂直,三垂线定理及其逆定理和异面直线所成角等较多的知识点,是高考的热点和难点。在总结时,若能够引导学生进行对解二面角的问题进行探究和总结,对提高学生的数学思想方法是有帮助的,对提高学生灵活运用所学的也有很重要的作用。为此我对这方面进行总结,以供教学和学习参考。(一)对本内容进行思考时,必须弄清两个概念:(1)什么是二面角, 如何表示?而二面角的大小是可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度. (2)什么是二面角的平面角,如何表示?这一概念特别重要,要能够很快地反应出二面角的平面角是以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角。,二面角的平面角的定义三个主要特征是:过棱上任意一点;分别在两个面内作射线;射线垂直于棱。明白这一点对于能够作出或找出二面角的平面是很关键。在脑子里要能想象出二面角平面角的图形。如图, 0∈a,OAα , OBβ ,OA⊥a, OB⊥a。(二)寻找有棱二面角的平面角的方法和求解。寻找和求作二面角的平面角是解二面角问题的关键,这也是个难点。在从图形中作出二面角的平面角时,要结合已知条件来对图形中的线线、线面和面面的位置关系先进行分析,确定有哪些是平行、垂直的或者是特殊的平面图形,然后运用这些的有关性质和二面角的平面角的定义进行找出二面角的平面角。所以解关于二面角问题需要有很好的对线线、线面和面面的位置关系的分析判断能力。而在求作二面角的平面角的方法主要有三种:定义法、三垂线法、垂面法。至于在求解有关平面角的问题时,这平面角通常是在三角形中,所以常要用到解直角三角形和斜三角形的知识,这包括正弦和余弦定理的知识,也会用到其它的平面几何知识。(1)定义法 :利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。下面举几个例子来说明。例 1:如图,立体图形V- ABC的四个面是全等的正三角形,画出二面角V-AB-C 的平面角并求出它的度数。分析 :由图可知,所求的二面角的棱是AB,两个面是面VAB和面 CAB。由已知可知这是一个正四面体,...