电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

数列型不等式放缩技巧九法VIP免费

数列型不等式放缩技巧九法_第1页
1/11
数列型不等式放缩技巧九法_第2页
2/11
数列型不等式放缩技巧九法_第3页
3/11
数列型不等式的放缩技巧九法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一 利用重要不等式放缩1. 均值不等式法例 1 设求证解析 此数列的通项为,,即 注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式,若放成则得,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里 其中,等的各式及其变式公式均可供选用。 例 2 已知函数,若,且在[0,1]上的最小值为,求证:(02 年全国联赛山东预赛题) 简析 例 3 求证.简析 不等式左边=,故原结论成立.2.利用有用结论 1 / 11例 4 求证简析 本题可以利用的有用结论主要有: 法 1 利用假分数的一个性质可得 即 法 2 利用贝努利不等式的一个特例(此处)得 注:例 4 是 1985 年上海高考试题,以此题为主干添“枝”加“叶”而编拟成 1998 年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。如理科题的主干是:证明(可考虑用贝努利不等式的特例) 例 5 已知函数求证:对任意且恒成立。(90 年全国卷压轴题) 简析 本题可用数学归纳法证明,详参高考评分标准;这里给出运用柯西()不等式的简捷证法:而由不等式得(时取等号) (),得证!例 6 已知用数学归纳法证明;对对都成立,证明(无理数)(05 年辽宁卷第22 题) 2 / 11解析 结合第问结论及所给题设条件()的结构特征,可得放缩思路:。于是, 即注:题目所给条件()为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论来放缩: ,即例 7 已 知 不 等 式表 示 不 超 过 的最大整数。设正数数列满足:求证(05 年湖北卷第(22)题)简析 当时,即 于是当时有 注:①本题涉及的和式为调和级数,是发散的,不能求和;但是可以利用所给题设结论来进行有效地放缩; ②引入有用结论在解题中即时应用,是近年来高考创新型试题的一个显著特点,有利于培养学生的学习能力与创新意识。 3 / 11例 8 设,求证:数列单调递增且 解析 引入一个结论:若则(证略)整理上式得(),以代入()式得即单调递增。以代入()式...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

数列型不等式放缩技巧九法

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部