一、什么是几何直观?几何直观指的是通过“几何”的手段, 达到“直观”的目的,实现“描述和分析问题”的目标。 这里的“几何”手段主要是指“利用图形”,“直观”的目的主要是将“复杂、抽象的问题变得简明、 形象”。因此, 几何直观对学生而言是一种有效的学习方法,对教师而言是一种有效的教学手段,它是数形结合思想的体现,在整个数学学习过程中发挥着重要作用。第二, 几何直观所利用的“图形”主要是指点、线、面、体以及由以上四要素组成的其他几何图形,在小学阶段主要有正方形、长方形、三角形、平等四边形、梯形、圆以及线段、直线、射线等。几何直观所要描述和分析的问题,不仅可以是生活问题,而且可以是数学问题。第三,几何直观的意义和价值主要体现在三个方面:一是有助于把复杂、抽象的问题变得简明、形象,二是有助于探索解决问题的思路并预测结果,三是有助于帮助学生直观地理解数学。二、对于几何直观的认识顾名思义,几何直观所指有两点:一是几何,在这里几何是指图形;二是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象, 综合起来,几何直观就是依托、利用图形进行数学的思考和想象。 它在本质上是一种通过图形所展开的想象能力。爱因斯: tH_(Einstein ,1879 — 1955)曾说过一句名言: “想象力比知识更重要,因为知识是有限的,想象力概括着世界上的一切,推动着进步,并且它是知识进化的源泉。严格地说,想象力是科学研究中的实在因素。”①"数学是研究数量关系与空间形式的科学。”空间形式最主要的表现就是“图形”,除了美术,只有数学把图形作为基本的、主要的研究对象。在数学研究、学习、讲授中,不仅需要关注研究图形的方法、 研究图形的结果, 还需要感悟图形给我们带来的好处,几何直观就是在“数学一几何一图形”这样一个关系链中让我们体会到它所带来的最大好处。这正如 20 世纪最伟大的数学家希尔伯特(Hilbert ,1862 — 1943) 在其名著 《直观几何》一书中所谈到的,图形可以帮助我们发现、 描述研究的问题;可以帮助我们寻求解决问题的思路;可以帮助我们理解和记忆得到的结果。几何直观在研究、学习数学中的价值由此可见一斑。从另一个角度来说,几何直观是具体的,不是虚无的,它与数学的内容紧密相连。事实上,很多重要的数学内容、概念, 例如,数,度量,函数, 以至于高中的解析几何...