初 一数学几何的概念 —有理数与无理数统称为实数。 有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。 自然数: 表示物体的个数0 、1 、2 、3 、4 ~(0 包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。 相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1 的两个数互为倒数。 绝对值: 数轴上表示数a 的点与圆点的距离称为a 的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0 的绝对值是0 。 数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得 0 。 ⑵减法法则:减去一个数,等于加上这个数的相反数。 ⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得 0 。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0 除以任何一个不等于 0 的数,都得 0 。 角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。 数学第一章相交线 一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。 二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。 对顶角的性质:对顶角相等。 三、垂直 1 、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a ⊥b 垂直是相交的一种特殊情形。 2 、垂线的性质: ①过一点有且只有一条直线与已知直线垂直; ②连接直线外一点与直线上各点的所有线段中,垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 3 、画法:①一靠(已知直线)②二过(定点)③三画(垂线) 4 、空间的垂直关系 四、平行线 1 、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a ‖b 2 、 “三线八角”:两条直线被第三条直线所截形成的 ① 同位角:“同方同位”即在两条直线的上方或下方,在...