数学思维与数学思维能力的培养:(一)数学思维概述1、数学思维:指在数学活动中的思维,是人脑和数学对象(空间形式、数量关系、结构关系) 交互作用并按照一定思维规律认识数学内容的内在理性活动。它既具有思维的一般性质, 又有自己的特性。 最主要的特性表现在其思维的材料和结果都是数学内容。2、小学生数学思维发展的阶段:(1)直观行动思维:这是以实际的操作行为依托的数学思维。(2)具体形象思维:这是以事物的表象为依托的数学思维,它是一般形象思维的初级形态。(3)抽象逻辑思维:这是脱离了直观形象依靠概念、判断和推理所进行的数学思维。3、数学思维的特性:(1)思维的概括性:是以客观事物为依据,在原有经验的基础上,舍弃了具体事物的非本质特征, 提示数量关系和空间形式的本质特征及其规律,并把它推广到同类事物或现象之中。数学概念的形成、数学公式、汉则的获得都需要通过抽象概括,因此,概括水平的高低是衡量数学思维能力强弱的重要标志之一。(2)思维的问题性:主要表现为数学思维总是与数学的实际总是相联系,总是表现为不断提出问题、分析问题直到解决问题。(3)思维的逻辑性:是数学思维的核心。4、数学思维的结构:(1)数学思维的材料和结果:指的是数学思维的内容。(2)数学思维的基本方法:又称思维的操作手段小学数学思维的基本方法有“观察、实验、比较、分类、分析、综合、抽象、概括、归纳、演绎、类比、联想等。”数学思维的基本形式: 按思维活动的三种方式分类, 主要指逻辑思维的基本形式------概念、判断和推理;形象思维的基本形式-----表象、直感和想像;直觉思维的基本形式 ---- 直觉和灵感。数学思维品质主要有深刻性、灵活性、敏捷性、批判性和独创性等。(二)数学思维的分类:1、集中思维与发散思维:集中思维是朝着一个目标、遵循单一的模式,求出归一答案的思维, 又称为求同思维; 发散思维则表现在解决问题时,能根据已提供的条件,利用已有的知识经验,从多个方向、不同途径去探索思考,以寻求新的解决问题和途径和方法,发散思维又称为求异思维。2、再造性思维与创造性思维:再造性思维是指原有的经验和已经掌握的解题方法、策略,在灯似的情境中直接解决问题的思维方式。创造性思维是指在强烈的创新意识的指导下, 指导头脑中已有的信息重新加工,产生具有进步意义的新设想、新方法的思维。(三)数学思维的一般方法:1、观察与实验:(1)观察:是受思维影响的,有目...