电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

极坐标与极坐标方程VIP免费

极坐标与极坐标方程_第1页
1/8
极坐标与极坐标方程_第2页
2/8
极坐标与极坐标方程_第3页
3/8
极坐标及极坐标方程的应用1. 极坐标概述第一个用极坐标来确定平面上点的位置的是牛顿。他的《流数法与无穷级数》,大约于1671年写成,出版于 1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。瑞士数学家J. 贝努力利于 1691年在《教师学报》上发表了一篇基本上是关于极坐标的文章,所以通常认为J. 贝努利是极坐标的发现者。J. 贝努利的学生 J.赫尔曼在 1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法。有些复杂的曲线用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子、军事等领域,很多学者对极坐标也有较深的研究。由此看来,极坐标已应用到各个领域。1.1 极坐标系的建立在平面内取一个定点 O ,叫作极点,引一条射线OX ,叫做极轴,再选定一个长度单位和角度的正方向 ( 通常取逆时针方向 ) 。对于平面内任意一点M ,用表示线段 OM 的长度,表示从 OX 到 OM 的角度,叫点 M 的极径,叫点 M 的极角,有序数对,就叫点 M 的极坐标。这样建立的坐标系叫极坐标系,记作 M,.若点 M 在极点,则其极坐标为=0,可以取任意值。图 1-1 图 1-2 如图 1-2,此时点 M 的极坐标可以有两种表示方法:(1) >0, M,(2) >0, M,同理,,与,也是同一个点的坐标。又由于一个角加 2nnZ 后都是和原角终边相同的角,所以一个点的极坐标不唯一。但若限定0 , 02 或,那么除极点外,平面内的点和极坐标就可以一一对应了。1.2 曲线的极坐标方程在极坐标系中,曲线可以用含有,这两个变数的方程0,来表示,这种方程叫曲线的极坐标方程。求曲线的极坐标方程的方法与步骤:1° 建立适当的极坐标系,并设动点M 的坐标为,;2° 写出适合条件的点M 的集合;3°0列方程,;4° 化简所得方程;5° 证明得到的方程就是所求曲线的方程。三种圆锥曲线统一的极坐标方程:图...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

极坐标与极坐标方程

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部