1 第 8 章 中学数学基础知识的教学 1 .什么是事物的本质属性?本质属性与属性有何区别? 答:在感性认识的基础上,经过比较、分析、综合、概括,抽象出一种事物所独有而其它事物所不具有的属性,则称其为这种事物的本质属性. 一个对象的某个属性,可以是其他对象也具有的,但是本质属性是它区别于其他对象的属性.一般的,一个概念的本质属性完全刻划了这个概念,从这一点来说,它是不可分割的.它的一部分只是这个概念的属性,但不一定是本质属性. 2 .什么是数学概念?数学概念是怎样产生的? 答:客观世界的许许多多事物都有各种各样的性质,事物之间存在各式各样的关系,这些性质和关系都是事物的属性.事物由于性质相同或不同,形成各种不同的类,属性相同的事物形成一类,性质不同的事物就形成不同的类.在人们在实践活动中,接受客观事物的各种各样信息,形成观念,这是感性认识阶段.在感性认识的基础上,经过比较、分析、综合、概括,抽象出一种事物所独有而其它事物所不具有的属性,即本质属性和特征,从而形成了反映事物的本质属性的特征和各种各样的概念.而各门学科都有它自己研究的对象,各门学科的概念总是反映事物某方面的本质属性.数学的研究对象是现实世界的空间形式和数量关系.数学概念是反映数学对象的本质属性和特征的思维形式. 数学概念的产生和发展的途径是不同的.有的数学概念是从它的现实模型直接反映得来的.例如,几何中的点、线、面、体等概念都是从物体的形状、位臵、大小关系等具体形象抽象概括得来的;有些数学概念是在一些相对具体的概念的基础上,经过多级抽象概括的过程才产生和发展而成的.例如,复数的概念是在实数概念的基础上产生出来的,而实数的概念是在有理数概念的基础上产生出来的,有理数概念是在自然数概念的基础上产生出来的;另外,有的数学概念是经过人们的思维加工,把客观事物的属性理想化、纯粹化才得到的.例如,直线的“笔直”、“可以无限延伸”等特征是从笔直的条形物体的形状理想化、纯粹化得来的;还有些数学概念是从数学的内部需要产生出来的.例如,为了数的乘法通行,规定一个数乘以 0 的积是 0 .又如,为了把正整数指数幂的运算法则扩充到 2 有理数指数幂,以至实数指数幂,在数学中产生了零指数、分数指数、无理数指数等概念;还有一些数学概念是根据理论上有存在的可能而提出来的。 例如,自然数集、无限远点、无理数 等概念都是在一定的理论基础上...