电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

映射与函数习题

映射与函数习题_第1页
1/10
映射与函数习题_第2页
2/10
映射与函数习题_第3页
3/10
广 州 至 慧 教 育 学生姓名 就读年级 授课日期 教研院审核 【知识点回顾】 1.函数的概念 一般地,设A、B 是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个(任意性)元素x,在集合B 中都有(存在性)唯一(唯一性)的元素y 和它对应,这样的对应叫做集合A 到集合B 的一个函数(三性缺一不可) 函数的本质:建立在两个非空数集上的特殊对应 这种“特殊对应”有何特点:1).可以是“一对一” 2).可以是“多对一” 3).不能“一对多” 4). A中不能有剩余元素 5).B 中可以有剩余元素 判断两个函数相同:只看定义域和对应法则 2.映射的概念 一般地,设A、B 是两个集合,如果按某一个确定的对应关系f,使对于集合A 中的每一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B为从集合A 到集合B 的一个映射(mapping)。 思考:映射与函数区别与联系? 函数——建立在两个非空数集上的特殊对应 映射——建立在两个非空集合上的特殊对应 1)函数是特殊的映射,是数集到数集的映射. 2)映射是函数概念的扩展,映射不一定是函数. 3)映射与函数都是特殊的对应 思考:映射有“三性”: ①“有序性”:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射; ②“存在性”:对于集合A 中的任何一个元素,集合B 中都存在元素和它对应; ③“唯一性”:对于集合A 中的任何一个元素,在集合B 中和它对应的元素是唯一的. 3.用映射定义函数 (1).函数的定义:如果A、B 都是非空数集,那末 A 到B 的映射f:A → B 就叫做A → B的函数。记作:y=f (x). (2)定义域:原象集合A 叫做函数y=f (x)的定义域。 (3)值域:象的集合C 叫做函数y=f (x)的值域。 定义:给定一个集合A 到集合B 的映射,且 a∈A, b∈B。如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象。 给定映射f:A→B。则集合A 中任何一个元素在集合B 中都有唯一的象,而集合B 中的元素在集合A 中不一定都有原象,也不一定只有一个原象。 问题 1:下图中的(1)(2)所示的映射有什么特点? 答:发现规律:(1)对于集合A 中的不同元素,在集合B 中有不同的象, 我们把这样的映射称为单射。 (2)集合B 中的每一个元素都有原象,我们把这样的映射称为满射。 定义:一般地,设A、B 是两个集合。f:A→B 是集合A 到集合B ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

映射与函数习题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部