实验五 图像形状及颜色畸变的校正 一、 实验目的与要求 让学生了解数字图像的数学表达及相关概念,通过实验让学生加深对数学在相关学科的应用价值的认识,培养学生的实际操作能力,并引导他们建立基础学科在处理具体问题时方法上联系。 二、 问题描述 对于在颜色或形状上发生畸变的图像,通过数学的方法实现校正。 三、问题分析 先由教师讲授数字图像的基本概念(包括图像的数学化、采样、量化、灰度、各种数学图像的文件格式、表色系、颜色映像等),再通过具体的实例给学生示范对于在颜色或形状上发生畸变的图像如何通过数学的方法实现校正的过程。最后让学生动手完成对某些特殊畸变的图像的校正,写出数学原理和实验报告。 四、背景知识介绍 1 . 数字图像的数值描述及分类 图像是对客观存在物体的一种相似性的生动模仿与描述,是物体的一种不完全的不精确的描述。数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素。采样是将空域上或时域上连续的图像变换成离散采样点(像素)集合的一种操作。 对一幅图像采样后,若每行像素为 M 个,每列像素为 N 个,则图像大小为 MN个像素。例如,一幅 640480 的图像,就表示这幅连续图像在长、宽方向上分别分成 640 个和 480 个像素。显然,想要得到更加清晰的图像质量,就要提高图像的采样像素点数,即使用更多的像素点来表示该图像。 客观世界是三维的,从客观场景中所拍摄到的图像是二维信息。因此,一幅图像可以定义为一个二维函数 f(x ,y ),其中 x ,y 是空间坐标。对任何一对空间坐标(x ,y )上的幅值 f(x ,y ),成为表示图像在该点上的强度或灰度,或简称为像素值。因为矩阵是二维结构的数据,同时量化值取整数,因此,一幅数字图像可以用一个整数矩阵来表示。矩阵的元素位置(i,j),就对应于数字图像上的一个像素点的位置。矩阵元素的值 f(i,j)就是对应像素点上的像素值。 值得注意的是矩阵中元素 f(i,j)的坐标含义是 i 为行坐标,j 是列坐标。而像素f(x ,y )的坐标含义一般指直角坐标系中的坐标,两者的差异如下图: 对应于不同的场景内容,数字图像可以大致分为二值图像,灰度图像,彩色0 列坐标(j) 行坐标(i) 矩阵元素 f (i,j) 0 纵坐标(y ) 横坐标(x ) 像素 f(x ,y ) 图 1.1 矩阵坐标系与直角坐标系 图像三类。 1)二值图像 它是指每个像素不是黑就是白,其灰度值没有...