电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

正弦定理的几种证明方法VIP免费

正弦定理的几种证明方法_第1页
1/3
正弦定理的几种证明方法_第2页
2/3
正弦定理的几种证明方法_第3页
3/3
正弦定理的几种证明方法1.利用三角形的高证明正弦定理(1)当ABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定义,有,。由此,得,同理可得,故有.从而这个结论在锐角三角形中成立.(2)当ABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D,根据锐角三角函数的定义,有,。由此,得,同理可得故有.由(1)(2)可知,在ABC中,成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即.1’用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A,点B之间的距|AB|,可测量角A与角B,需要定位点C,即:在如图△ABC中,已知角A,角B,|AB|=c,求边AC的长b解:过C作CD^AB交AB于D,则abDABCABCDba推论:同理可证:2.利用三角形面积证明正弦定理已知△ABC,设BC=a,CA=b,AB=c,作AD⊥BC,垂足为D.则Rt△ADB中,,∴AD=AB·sinB=csinB.∴S△ABC=.同理,可证S△ABC=.∴S△ABC=.∴absinc=bcsinA=acsinB,在等式两端同除以ABC,可得.即.3.向量法证明正弦定理(1)△ABC为锐角三角形,过点A作单位向量j垂直于,则j与的夹角为90°-A,j与的夹角为90°-C.由向量的加法原则可得,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到由分配律可得.B∴|j|Cos90°+|j|Cos(90°-C)=|j|Cos(90°-A).j∴asinC=csinA.∴.A另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90°-C,j与的夹角为90°-B)∴.DCBAC(2)△ABC为钝角三角形,不妨设A>90°,过点A作与垂直的单位向量j,则j与的夹角为A-90°,j与的夹角为90°-C.由,得j·+j·=j·,j即a·Cos(90°-C)=c·Cos(A-90°),∴asinC=csinA.∴另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与夹角为90°+B.同理,可得.∴4.外接圆证明正弦定理在△ABC中,已知BC=a,AC=b,AB=c,作△ABC的外接圆,O为圆心,连结BO并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C=∠B′,∴sinC=sinB′=.∴.同理,可得.∴.这就是说,对于任意的三角形,我们得到等式.ACBA

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

正弦定理的几种证明方法

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部