电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

微纳米力学及纳米压痕表征技术分析研究VIP免费

微纳米力学及纳米压痕表征技术分析研究_第1页
1/11
微纳米力学及纳米压痕表征技术分析研究_第2页
2/11
微纳米力学及纳米压痕表征技术分析研究_第3页
3/11
微纳米力学及纳米压痕表征技术摘要:微纳米力学为微纳米尺度力学,即特征尺度为微纳米之间的微细结构所涉及的力学问题[1]。纳米压痕方法是通过计算机控制载荷连续变化,并在线监测压深量[2],适用于微米或纳米级的薄膜力学性能测试,本实验采用Oliver–Pharr方法研究了Al2O3薄膜,附着在ZnS基底,得到了Al2O3薄膜的力学性能。关键词:微纳米力学纳米压痕杨氏模量硬度0引言近年来,随着工业的现代化、规模化、产业化,以及高新技术和国防技术的发展,对各种材料表面性能的要求越来越高。20世纪80年代,现代表面技术被国际科技界誉为最具发展前途的十大技术之一。薄膜、涂层和表面处理材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异,这些差异在摩擦磨损、物理、化学、机械行为中起着主导作用,如计算机磁盘、光盘等,要求表层不但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。[3]同时随着材料设计的微量化、微电子行业集成电路结构的复杂化,传统材料力学性能测试方法已难以满足微米级及更小尺度样品的测试精度,不能够准确评估薄膜材料的强度指标和寿命;另外在材料微结构研究领域中,材料研究尺度逐渐缩小,材料的变形机制表现出与传统块状材料相反的规律,以上趋势要求测试仪器具有高的位置分辨率、位移分辨率和载荷分辨率,纳米压痕方法能够满足上述测试需求。[4]现在,薄膜的厚度己经做到了微米级,甚至于纳米级,对于这样的薄膜,用传统的材料力学性能测试方法己经无法解决。纳米压痕试验方法是一种在传统的布氏和维氏硬度试验基础上发展起来的新的力学性能试验方法。它通过连续控制和记录样品上压头加载和卸载时的载荷和位移数据,并对这些数据进行分析而得出材料的许多力学性能指标,压痕深度可以非常浅,压痕深度在纳米范围,也可以得到材料的力学性能,这样该方法就成为薄膜、涂层和表面处理材料力学性能测试的首选工具,如薄膜、涂层和表面处理材料表面力学性能测试等。1纳米力学简介1.1纳米材料纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子与宏观体系之间的纳米粒子所组成的材料,是把组成相或晶粒结构控制在100nm以下尺寸的材料。1.2纳米材料分类纳米材料分类:按维数,纳米材料的基本单元可以分为:1零维:在空间三维尺度上均在纳米尺度,如纳米尺度颗粒,原子团簇;2一维:在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等;3二维:在三维空间中有一维在纳米尺度,如超薄膜,多层膜,超晶格等。1.3纳米材料特性及其基本单元纳米材料的基本单元:团簇、纳米微粒、纳米管、纳米带、纳米薄膜、纳米结构。纳米材料有下列基本特性:1量子尺寸效应2小尺寸效应3表面效应4库仑堵塞和宏观量子隧道效应5介电限域效应量子尺寸效应是指对于介于原子、分子与大块固体之间的超微颗粒而言,大块材料中的连续的能带分裂为分立的能级,能级间的距离随颗粒尺寸减小而增大。当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道(HOMO)和最低未被占据的分子轨道能级(LUMO),能隙变宽现象,称为量子尺寸效应。小尺寸效应当超微粒子的尺寸与光波波长、德布罗意波长(物质波的波长)、超导态的相干长度(能够发生干涉的最大光程差)或与磁场穿透深度相当或更小时,晶体周期性边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近的原子密度减小,导致声、光、电、磁、热力学等特性出现异常的现象。表面效应是指纳米粒子的表面原子数与总原子数之比随着粒子尺寸的减小而大幅度的增加,粒子的表面能及表面张力也随着增加,从而引起纳米粒子物理、化学性质的变化。1.4纳米材料的特殊性质特殊的光学性质是指所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,因为金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

微纳米力学及纳米压痕表征技术分析研究

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部