百度空间 | 百度首页 | 登录 在狂风中摇曳 我的学习BLOG 主页博客相册个人档案 好友 查看文章 [转]小波变换与傅里叶变换 2009-09-22 09:59 如果有人问我,如果傅里叶变换没有学好(深入理解概念),是否能学好小波。答案是否定的。如果有人还问我,如果第一代小波变换没学好,能否学好第二代小波变换。答案依然是否定的。但若你问我,没学好傅里叶变换,能否操作(编程)小波变换,或是没学好第一代小波,能否操作二代小波变换,答案是肯定的。 一、一、基的概念 我们要明确的是基的概念。两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基,是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到 inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为 Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。 下面我们谈谈小波。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度 a和平移因子 b的小波,和原信号内积,所得到的小波系数,都可以表示成,在 a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将 a二进离散化,此时 b是任意的。这样小波被...