精品文档---下载后可任意编辑数学教学心得新版多篇感想数学教学心得 1 1、我认为应该讲实数的完备性的六大定理及其证明,在证明这六大定理彼此等价的过程中,肯定对同学们也是数学素养的培育。可能你们认为同学们接受不了,所以应该放弃。我不认为交大的学生会这么差,你们的第 18 题都有人做得出来,充分说明他们潜质无限,你们还有什么好担心的?而且,没有这六大定理,你怎么证明连续函数的性质?别告诉我连续函数的性质不重要,因为这是常识,是最基础的东西。当然,的确有人无论如何也学不会,但数学本身就不是任何人都可以玩的游戏,就像篮球一样,不是每个人都有姚明的天赋。 2、函数项级数的绝对收敛有一个重要的结论,就是可以任意交换项的顺序而不改变收敛性和收敛值。这个结论的证明并不复杂,也没用到经典的极限理论。思想方法也很值得借鉴。但我不明白我们的课本里却没有。当你告诉同学们一个结论的时候,你却不能提供证据,这样,时间长了同学们带着困惑去听课,会越听越糊涂,云山雾罩,最终失去了对数学的热爱。讲课者也无法向学生展示数学的美。 2、上极限的概念我认为也应该讲,但没必要像数学专业讲得这么深奥。我对高数的学生讲这个概念只是一句话:上极限就是最大的子极限。再举一些例子就完了。不然的话,当极限不存在的时候,你如何求幂级数的收敛半径? 精品文档---下载后可任意编辑 3、一致收敛的概念也应该讲,因为逐项求导、逐项积分也是工科学生常常使用的东西,没有一致收敛,你怎么可以堂而皇之地逐项求导、逐项积分?很多幂级数你不逐项求导、逐项积分你根本就求不出来。当然我讲这个概念也讲得很辛苦,讲完一致收敛及其他的性质,以及举出各种反例整整用了两个星期的时间(八学时),但是,一旦有了这个概念,学到幂级数的时候就感到非常轻松,一切都显得自然而然。因为幂级数的特别性,你很容易就可以证明其是否一致收敛,再加上利用上极限的概念你很容易就可以证明逐项求导、逐项积分之后的幂级数收敛半径不变,很简单你就可以逐项积分、逐项求导。我真不知道没有一致收敛和上极限的概念,你怎么用很简洁的方法证明这个结论?而没有这个结论,你又如何保障逐项积分、逐项求导之后依旧收敛并且收敛到原来的函数的积分或者导数?而假如不加证明地丢给同学们很多不明就里的结论,要求他们强行记忆,然后舍命地做各种题目训练出做题的技能,这真的就是我们培育人才的目的吗?数学素养的教育和深度思考的习惯对其他专...