概率论与数学建模 基础知识部分 一、概率论: 1、概率:刻化某一事件在一次试验中发生的可能性大小的数。 注:事件指随机事件(可重复、可预测、结果明确) 例如抛骰子,抛一枚硬币。 2、常见的随机变量:X (1)离散型: 泊松分布:kePXkkk(= ) =,=0、 1、 2、 、 、! 实际应用:时间 t内到达的次数; (小概率事件)一本书中一页中的印刷错误数; 某地区在一天内邮件遗失的信件数; 某一天内医院的急症病人数; 某一地区一个时间间隔内发生交通事故的次数; 一个时间间隔内某种放射性物质发出的经过计数器的α 粒子数等等„„ (2)连续型: 指数分布:xex>0fX-,() =0, 其 它 其中>0为常数 ,记为)(~ExpX 特点:无记忆性。即是P(/)()XstXsPXt 一个元件已经使用了s 小时,在此情形下,它总共能使用至少s+t小时的概率,与开始使用时算起它至少能使用t小时的概率相等,即元件对已使用过s 小时无记忆。 实际应用:(可靠性理论、排队论)许多“等待时间”都服从指数分布;一些没有明显“衰老”迹象的机械元器件(如半导体元件)的寿命也可也用指数分布来描述„„ 正态分布:xefX