电动力学阐述 经典电动力学以矢量分析、张量分析、复变函数、格林函数、特殊函数、数学物理方程、矩阵等数学知识为工具,以库仑定律、安培-毕奥-萨伐尔定律、法拉第电磁感应定律、楞茨定律等实验定律为基础,以宏观电磁现象为研究对象,在麦克斯韦、亥姆霍兹、达朗伯、菲涅耳等科学家的研究中逐步发展起来的。 研究对象宏观电磁现象主要包括内容:电磁场的激发、辐射和传播,介质在电磁场作用下的极化和磁化,电场和电荷,电流系统的相互作用,以及电磁场和导体间的相互作用等等。电磁场是一种运动的物质,运动的根本原因是空间中变动的电场和变动的磁场的相互激发转化。对于电磁场的分布可以通过研究电场强度 E 和磁感应强度 B(电标势φ 和磁矢势 A )来描述。和其他物体一样,通过能量和动量两物理量实现对电磁场运动特性的描述,在一些特殊情况下,他们也满足能量守恒和动量守恒。 描述宏观电磁现象的基本关系是:库仑定律、奥斯特定律、安培力、洛仑兹力、麦克斯韦方程组、介质的电磁性质方程、麦克斯韦方程在介质分界面上的边值关系,以及电磁场与带电物质之间能量守恒和动量守恒定律,还有电荷守恒定律。 明确电动力学的学习目的: 1 ) 掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解; 2 ) 获得本课程领域内分析和处理一些基本问题的初步能力,为以后 2 解决实际问题打下基础; 3 ) 通过电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性,帮助我们加深辩证唯物主义的世界观。 3 第零章 预备知识—矢量场论复习 Preliminary Knowledge —Revise in the Vector Field Theory 学习电动力学前需要补充的数学知识,矢量场论部分主要包括:梯度、散度、旋度三个重要概念及其在不同坐标系中的运算公式,它们三者之间的关系。其中包括两个重要定理:即 高斯定理(Gauss Theorem) 和斯托克斯定理(Stokes Theorem),以及二阶微分运算和算符运算的重要公式和格林定理(Green Theorem)。 学习目的:掌握梯度、散度、旋度三个重要概念,理解在不同坐标系中不同的表达形式,了解他们之间的关系;掌握高斯定理和斯托克斯定理,能够熟练进行二阶微分运算和算符运算。 重点:梯度、散度、旋度三个重要概念;高斯定理和斯托克斯定理。 难点:梯度、散度、旋度在柱坐标和球坐标中的表达式;高斯定理和斯托克斯定理;二阶微分运算和算符运算。 主要内容 方向导数:方向导数是标量函...