圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点、的距离的和等于常数 2(不小于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离 2c 叫椭圆的焦距。若为椭圆上任意一点,则有。椭圆的原则方程为:()(焦点在 x 轴上)或()(焦点在 y轴上)。注:①以上方程中的大小,其中;② 在和两个方程中均有的条件,要分清焦点的位置,只要看和的分母的大小。例如椭圆(,,)当时表达焦点在轴上的椭圆;当时表达焦点在轴上的椭圆。(2)椭圆的性质① 范围:由原则方程知,,阐明椭圆位于直线,所围成的矩形里;② 对称性:在曲线方程里,若以替代方程不变,因此若点在曲线上时,点也在曲线上,因此曲线有关轴对称,同理,以替代方程不变,则曲线有关轴对称。若同步以替代,替代方程也不变,则曲线有关原点对称。因此,椭圆有关轴、轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③ 顶点:确定曲线在坐标系中的位置,常需规定出曲线与轴、轴的交点坐标。在椭圆的原则方程中,令,得,则,是椭圆与轴的两个交点。同理令得,即,是椭圆与轴的两个交点。因此,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。同步,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,,,且,即;④ 离心率:椭圆的焦距与长轴的比叫椭圆的离心率。 ,∴,且越靠近 ,就越靠近,从而就越小,对应的椭圆越扁;反之,越靠近于,就越靠近于,从而越靠近于,这时椭圆越靠近于圆。当且仅当时,,两焦点重叠,图形变为圆,方程为。2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线()。注意: ①式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支);②当时,表达两条射线;③当时,不表达任何图形;④两定点叫做双曲线的焦点,叫做焦距。(2)双曲线的性质① 范围:从原则方程,看出曲线在坐标系中的范围:双曲线在两条直线的外侧。即,即双曲线在两条直线的外侧。② 对称性:双曲线有关每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线的对称中心,双曲线的对称中心叫做双曲线的中心。③ 顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线的方程里,对称轴是轴,因此令得,因此双曲...