【题型归类】题型一:四种命题之间的关系例 1命题 “ 假 设 a2b 2、 R〕,那么 a=b=0〞的逆否命题是〔〕 .0(a b(A)(B)(C)(D)R), 那么a2 b2假设 a b 0 (a,b假设 a=b 0 (a,b0R), 那么a2b20bbR), 那么R), 那么a22200假设 a 0且b 0 (a,b假设 a 0或b 0 (a,ba2题型二:充实、必要条件题型例 2““〞是 等式〞的〔〕 .sin( + )=sin2 成立, , 成等差数列〔A〕充实而不必要条件〔 B〕必要而不充实条件〔C〕充要条件〔 D〕既不充实有不必要的条件a“变式操练: a 1“〞是1〞的〔〕.,2对任意的正数 x xx〔A〕充实而不必要条件〔 B〕必要而不充实条件〔C〕充要条件〔 D〕既不充实有不必要的条件x 1例 3p : 2 122,假设 是 的必要但不充实条p2;q : x 2x 1 m 0(m 0)q3件,求实数 m 的取值范围 .题型三:复合命题真假的推断例4 p :方程x2 mx 1 0有两个不等的负实数根;q:方程 4x2 4 m 2 x 1 0 无实根, p q假设 或 为真, 且 为假,p q 求 m 的取值范围 .变式操练:设有两个命题 , p : 不等式 x x 1 a的解集为 R, q: 函数 f (x)x7 3a 在R上是减函数 , 假如这两个命题中有且只有一个真命题 , 那 么 a 的取值范围是.题型四:全称命题、特称命题例 5 设 A,B为两个调集 , 以下四个命题 :(1)A Bx A,有x B(2) A BAI B (3) A BB A(4)A Bx A使得x B此中真命题的序号为 .变式操练:以下命题中 , 既是真命题又是特称命题的是 ().(A)(B)有一个 使si n 90sinsin存在实数 x,使x2(C)(D)对一切 ,sin 180sinsin15 sin 60 cos 45 cos60 sin 45题型五:综合应用例 6 关于 x的实系数二次方程x2 ax b 0. 证明:有两个实数根,2且是2 24 b且 b 4 的充要条件 .【思想方法】1. 数学思想:本局部用到的数学思想有:划归思想,分类讨论思想亦即否认思想.2. 数学方法: 本局部用到的数学主要是反证法 , “否认一个命题常常通过 举反例〞来说明.1.对任意实数给出以下命题:〔1“〕 a b“〞是 ac bc 〞的充要条件;〔2“〕 a 5“是无理数〞是 a 是无理数〞的充要条件;〔3“〕 a b“〞是 a22〞的充实条件;b〔4“〕 a 5“〞是 a 3〞的必要条件此中真命题的个数是〔〕 .〔A〕1(B)2 〔C〕3〔D〕42. “ “〞是 〞的〔〕x yx y〔A〕充实不必要条件 (B) 必要不充实条件〔C〕充要条件〔 D〕既不充...