八年级上册第十九章四边形平行四边形的性质(一)教案学校主备人时间设计理念平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.教学目标1、知识与技能:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2、会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.培养学生发现问题、解决问题的能力及逻辑推理能力.3、情感态度与价值观:培养学生严谨的思维习惯和勇于探索的思想意识,体会几何知识的内涵与实际应用价值.重点平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.方法合作交流课型新授课教学过程教学环节教学内容师生活动设计意图一、创设情境1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?教师提问:上一节布置大家收集有关平行四边形的图片(相片),现在你们将自己所收集的图片与同伴交流.分四人小组,拿出收集的图片进行交流,观察其特征.采用让学生课前收集现实生活中的平行四边形并通过合作交流来引入平行四边形定义自然流畅,激发了学生兴趣.二、自主学习(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.① AB//DC,AD//BC,∴四边形ABCD是平行四边形(判定);② 四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).教师活动:请各组派代表将你们组收集、讨论的情况向全班进行交流.媒体使用:学生上讲台利用实物投影或直接展示,来汇报自己的材料.学生活动:通过观察图片、交流心得,丰富联想,得到平行四边形的特征:是有两组对边分别平行的四边形.三、探究新知平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)学生活动:分四人小组进行探讨,在探讨中采用观察、度量的方法,很快发现平行四边形具有以下性质:性质一:平行四边形的对边相等;性质二:平行四边形的对角相等.教师活动:在学生通过观察、度量的体验,发现了平行四边形性质之采用学生动手画图感知得到平行四边形的两个性质,然后再应用“化归”的数学思想解决性质的严格证明,并渗透一题多解的发散思维.(2)猜想平行四边形的对边相等、对角相等.后,引导学生进行证明.学生活动:证明平行四边形性质一、二,并踊跃上台演示.四、尝试应用(投影显示)如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?思路点拨:这个实际问题首先通过周长36m的平行四边形这个条件,利用已知一条边AB=8m,很容易求出AB=DC=8m,AD=BC=10m,这是平行四边形性质中的对边相等的应用.1.填空:(1)在ABCD中,∠A=教师活动:操作投影仪,分析例1,引导学生正确应用平行四边形的性质一,并板书,教会学生如何书写几何语言.(见课本P93)学生活动:参与教师分析,弄清解题思路.巩固平行四边形的性质,让学生体会学以致用的思想。,则∠B=度,∠C=度,∠D=度.(2)如果ABCD中,∠A—∠B=240,则∠A=度,...