8.2.2不等式的解集—、不等式的解集教学目标:(1)使学生掌握不等式的解、不等式的解集的定义。(2)知道什么是解不等式、不等式解集的表示方法。二、复习与练习:1、用不等式表示:(1)x的与3的差是正数;(2)2x与1的和小于0;(3)a的2倍与4的差是正数;(4)b的--与的和是负数;(5)a与b的差是非正数;(6)x的绝对值与1的和不小于1;2、下列各数中,哪些是不等式x+2>5的解?哪些不是?--3,--2,--1,0,1.5,3,3.5,5,7。三、新课探究:如图:请你在数轴上表示:(1)小于3的正整数;(2)不大于3的正整数;(3)绝对值小于3大于1的整数;(4)绝对值不小于--3的非正整数;由复习(2)可知,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是它的解。不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集。不等式x+2>5的解集,可以表示成x>3,也可以在数轴上直观地表示出来,如图概括:(1)、一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。(2)、求不等式的解集的过程,叫做解不等式。(3)、不等式的解集在数轴上可直观地表示出来,但应注意不等号的类型,小于在左边,大于在右边。当不等号为“>”“<”时用空心圆圈,当不等号为“”“”时用实心圆圈。30421四、基础训练。例1、方程3x=6的解有个,不等式3x<6的解有个。解方程3x=6的解只有1个,即x=2。不等式3x<6的解有无数个,其解为x<2,其中非负数整数解有两个,即x=0,x=1。例2、判断题(1)x=2是不等式4x<9的一个解;(2)x=2是不等式4x<9的解集;(3)不等式4x<9的解集是x<2;(3)不等式4x<9的解集是x<.解(1)正确。因为当x用2代替时,不等式4x<9成立。(2)错误。因为x=2仅仅是不等式4x<9的一个解,不能称为该不等式的解集。(3)错误。因为解集x<2不是不等式4x<9的所有解的集合。(4)正确。因为x<是不等式4x<9的所有的解组成的集合。例3、将下列不等式的解集在数轴上表示出来。(1)x<2(2)x(3)-1