我变胖了教学设计教学设计思想改变传统以讲解例题为主的教学方式,让学生经历试验、猜想、探索发现问题的过程,通过实际问题的解决,增强用数学方法解决问题的意识,教学中注意培养学生学习数学的主动性。学生填表时,发现有些同学半径与直径混淆,方程中直接用3.14替代π,圆柱体的体积公式遗忘等,教师应及时加以纠正。鼓励让学生谈想法和体会,关注学生课堂活动参与意识,使课堂活动富有生气。联系生活实际,用数学方法解决实际问题,逐步改变教师的教学行为。教学目标知识与技能1.能找到图形问题中的基本等量关系,并由此关系列方程解相关的应用题.2.进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.过程与方法通过分析图形问题中的数量关系,建立方程、解决问题.进一步提高分析问题、解决问题的能力.情感态度价值观在动手、独立思考、方程意识建立的过程中,进行大胆质疑和创新,体会数学应用的价值,激发主动学习的欲望.教学重点1.寻找图形问题中的等量关系,建立方程.2.根据具体问题列出的方程,掌握其简单的解方程的方法.教学难点寻找图形问题中的等量关系,建立一元一次方程,使实际问题数学化.教学方法直观——自主探索的方法在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化.教具准备橡皮泥、细铁丝.课时安排1课时教学过程Ⅰ.创新问题情境,引入新课[师]在我们的现代社会里,人们不经意地就会听到或看到一些“减肥”的广告.一听别人说自己最近胖了,就考虑怎样减去多余的脂肪.可我们今天不研究“减肥”,研究什么呢?我们今天研究“我变胖了”.Ⅱ.学生通过直观感知、操作等活动,寻找图形问题中的等量关系.1.做一做[师]现在拿出你们准备好的橡皮泥,先用这块橡皮泥捏出一个“瘦长”的圆柱体;然后再让这个“瘦长”的圆柱“变胖”,变成一个又矮又胖的圆柱,随后思考两个问题:(1)在你操作的过程中,圆柱由“瘦”变“胖”的过程中,圆柱的底面直径变了没有?圆柱的高度呢?(2)在这个变化过程,是否有不变的量?是什么没变?(让学生亲自动手操作,在动手操作的过程中,体会哪些量发生了变化,哪些量没有变化?教师对基础差的同学可适当引导)[生]在我操作的过程中,圆柱的直径和高度都发生了变化,而橡皮泥的体积没有变.[师]很好.我这儿有一个问题:有一位工人师傅要锻造底面直径为20厘米的“矮胖”形圆柱,可他手边只有底面直径是10厘米,高为36厘米的“瘦长”形圆柱,这位师傅想知道将这个“瘦长”形圆柱锻压成“矮胖”形圆柱.高就变成了多少?你能帮他吗?[生]用一元一次方程来解.这个问题的等量关系:锻压前的体积=锻压后的体积.[师]这位同学的分析很好.下面我们如果设锻压后的高为x厘米,通过填写下表来看一下锻压前的体积和锻压后的体积.锻压前锻压后底面半径5cm10cm高36cmxcm体积π×52×36π×102×x请一位同学填写.[生]锻压前的圆柱的底面半径为10÷2=5(厘米),高为36厘米,所以锻压前的圆柱的体积为π×52×36(立方厘米).锻压后的圆柱的底面半径为20÷2=10厘米,高设为x厘米,所以锻压后的体积为π×102×x.[师生共析]由等量关系我们便可得到方程:π×52×36=π×102×x.[师]列出方程我们只是走完“万里长征”的重要的第一步,如何解这个方程呢?[生]将π换成3.14,算出x的系数π×102,然后将系数化为1就解出了方程.[生]我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.[师]这位同学的想法很好.下面我们共同把这个题的过程写一下.解:设锻压后圆柱的高为x厘米,根据题意,列出方程:π×52×36=π×102×x解,得x=9答:高变成了9厘米.[师]我们再来看一个例子.(课本P164例1)[例1]用一根长为10米的铁丝围成一个长方体.(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有何变化?(3)...