实用标准文档二次函数的图像与性质一、二次函数的基本形式1.二次函数基本形式:yax2的性质:a的符号开口方向顶点坐标对称轴向上性质a00,00,0y轴x0时,y随x的增大而增大;x0时,y随x的增大而减小;x0时,y有最小值0.x0时,y随x的增大而减小;x0时,y随x的增大而增大;x0时,y有最大值0.a0向下y轴a的绝对值越大,抛物线的开口越小。2.yax2c的性质:上加下减。a的符号开口方向顶点坐标对称轴向上性质a00,c0,cy轴x0时,y随x的增大而增大;x0时,y随x的增大而减小;x0时,y有最小值c.a0向下y轴x0时,y随x的增大而减小;x0时,y随x的增大而增大;x0时,y有最大值c.3.yaxh的性质:左加右减。a的符号2开口方向顶点坐标对称轴向上性质a0h,0X=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0.xh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0.a0向下h,0X=h4.yaxhk的性质:a的符号2开口方向顶点坐标对称轴向上性质a0h,kh,kX=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.xh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.a0向下X=h文案大全实用标准文档二、二次函数图象的平移1.平移步骤:k;方法一:⑴将抛物线解析式转化成顶点式yaxhk,确定其顶点坐标h,k处,具体平移方法如下:⑵保持抛物线yax2的形状不变,将其顶点平移到h,向上(k>0)【或向下(k<0)】平移|k|个单位2y=ax2y=ax2+k向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k2.平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴yaxbxc沿y轴平移:向上(下)平移m个单位,yaxbxc变成22yax2bxcm(或yax2bxcm)⑵yaxbxc沿轴平移:向左(右)平移m个单位,yaxbxc变成22ya(xm)2b(xm)c(或ya(xm)2b(xm)c)三、二次函数yaxhk与yax2bxc的比较从解析式上看,yaxhk与yax2bxc是两种不同的表达形式,后者通过配b4acb2b4acb2方可以得到前者,即yax,其中h,.k2a4a2a4a222四、二次函数yax2bxc图象的画法五点绘图法:利用配方法将二次函数yax2bxc化为顶点式ya(xh)2k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们c、c、以及0,c关于对称轴对称的点2h,选取的五点为:顶点、与y轴的交点0,0(若与x轴没有交点,则取两组关于对称轴对称的点).0,x2,与x轴的交点x1,画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.文案大全实用标准文档五、二次函数yax2bxc的性质b4acb2b1.当a0时,抛物线开口向上,对称轴为x,顶点坐标为,.2a4a2a当xbbb时,y随x的增大而减小;当x时,y随x的增大而增大;当x2a2a2a4acb2时,y有最小值.4ab4acb2b2.当a0时,抛物线开口向下,对称轴为x,顶点坐标为,.当2a4a2axbbb时,y随x的增大而增大;当x时,y随x的增大而减小;当x时,y2a2a2a4acb2有最大值.4a六、二次函数解析式的表示方法1.一般式:yax2bxc(a,b,c为常数,a0);2.顶点式:ya(xh)2k(a,h,k为常数,a0);3.两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关...