专题限时集训(十三)直线与圆建议A、B组各用时:45分钟]A组高考达标]一、选择题1.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.2C圆C的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径为r=2,因此2+a×1-1=0,所以a=-1,从而A(-4,-1),|AB|===6.]2.(2016·衡水一模)已知圆x2+y2+mx-=0与抛物线y=x2的准线相切,则m=()A.±2B.±C.D.B抛物线的准线为y=-1,将圆化为标准方程得2+y2=,圆心到准线的距离为1=⇒m=±.]3.(2016·长春一模)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离最小值为()A.B.2C.3D.4C由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.设点M所在的直线方程为:x+y+m=0,根据平行线间的距离公式得,=,解得m=-6,即l:x+y-6=0,再根据点到直线的距离公式得点M到原点的距离的最小值为=3.]4.(2016·承德二模)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()【导学号:85952048】A.-或-B.-或-C.-或-D.-或-D由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k,则反射光线所在直线方程为y+3=k(x-2),即kx-y-2k-3=0.又因为光线与圆(x+3)2+(y-2)2=1相切,所以=1,整理得12k2+25k+12=0,解得k=-或k=-,故选D.]5.(2016·湘潭二模)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R且ab≠0,则+的最小值为()A.1B.3C.D.Ax2+y2+2ax+a2-4=0,即(x+a)2+y2=4,x2+y2-4by-1+4b2=0,即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则=1+2=3,即a2+4b2=9≥,所以+===1,当且仅当=即a=±b时取等号,故选A.]二、填空题6.(2016·赤峰高三统考)已知⊙O:x2+y2=1,若直线y=kx+2上总存在点P,使得过点P的⊙O的两条切线互相垂直,则实数k的取值范围是________.(-∞,-1]∪1,+∞)因为圆心为O(0,0),半径R=1.设两个切点分别为A,B,则由题意可得四边形PAOB为正方形,故有PO=R=,由题意知圆心O到直线y=kx+2的距离小于或等于PO≤=,即,即1+k2≥2,解得k≥1或k≤-1.]7.(2016·合肥一模)设点P在直线y=2x+1上运动,过点P作圆(x-2)2+y2=1的切线,切点为A,则切线长|PA|的最小值是________.2圆心C(2,0)到直线2x-y+1=0的距离d=,所以|PA|≥==2.]8.(2016·长沙二模)若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=________.18由题意得直线l1:y=x+a和直线l2:y=x+b截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为r=2,即==2⇒a2+b2=(2+1)2+(-2+1)2=18.]三、解答题9.(2016·南昌一模)已知圆C:x2+y2-4x-6y+12=0,点A(3,5).(1)求过点A的圆的切线方程;(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.解](1)由圆C:x2+y2-4x-6y+12=0,配方得(x-2)2+(y-3)2=1,圆心C(2,3).2分当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),即kx-y+5-3k=0.由d==1,得k=.4分又斜率不存在时直线x=3也与圆相切,5分故所求切线方程为x=3或3x-4y+11=0.6分(2)直线OA的方程为y=x,即5x-3y=0,8分点C到直线OA的距离为d==.10分又|OA|==,∴S=|OA|d=.12分10.(2016·洛阳一模)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程;(2)求过P点的圆C的弦的中点的轨迹方程.解](1)如图所示,|AB|=4,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,2分所以圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,所以|AD|=2,|AC|=4,C点坐标为(-2,6).在Rt△ACD中,可得|CD|=2.若直线l的斜率存在,设为k,则直线l的方程为y-5=kx,即k...